Properties

Label 2.57600.8t5.b.a
Dimension $2$
Group $Q_8$
Conductor $57600$
Root number $-1$
Indicator $-1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8$
Conductor: \(57600\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{2} \)
Frobenius-Schur indicator: $-1$
Root number: $-1$
Artin field: Galois closure of 8.0.47775744000000.1
Galois orbit size: $1$
Smallest permutation container: $Q_8$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{5}, \sqrt{6})\)

Defining polynomial

$f(x)$$=$ \( x^{8} + 60x^{6} + 810x^{4} + 1800x^{2} + 900 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 10.

Roots:
$r_{ 1 }$ $=$ \( 12 + 34\cdot 71 + 41\cdot 71^{2} + 46\cdot 71^{3} + 49\cdot 71^{4} + 46\cdot 71^{5} + 71^{6} + 4\cdot 71^{7} + 12\cdot 71^{8} + 46\cdot 71^{9} +O(71^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 21 + 11\cdot 71 + 49\cdot 71^{2} + 64\cdot 71^{3} + 60\cdot 71^{4} + 23\cdot 71^{5} + 9\cdot 71^{6} + 58\cdot 71^{7} + 45\cdot 71^{8} + 52\cdot 71^{9} +O(71^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 24 + 12\cdot 71 + 67\cdot 71^{2} + 24\cdot 71^{3} + 26\cdot 71^{4} + 25\cdot 71^{5} + 53\cdot 71^{6} + 60\cdot 71^{7} + 46\cdot 71^{8} + 48\cdot 71^{9} +O(71^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 25 + 5\cdot 71 + 64\cdot 71^{2} + 20\cdot 71^{3} + 28\cdot 71^{4} + 27\cdot 71^{5} + 35\cdot 71^{6} + 11\cdot 71^{7} + 32\cdot 71^{8} + 50\cdot 71^{9} +O(71^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 46 + 65\cdot 71 + 6\cdot 71^{2} + 50\cdot 71^{3} + 42\cdot 71^{4} + 43\cdot 71^{5} + 35\cdot 71^{6} + 59\cdot 71^{7} + 38\cdot 71^{8} + 20\cdot 71^{9} +O(71^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 47 + 58\cdot 71 + 3\cdot 71^{2} + 46\cdot 71^{3} + 44\cdot 71^{4} + 45\cdot 71^{5} + 17\cdot 71^{6} + 10\cdot 71^{7} + 24\cdot 71^{8} + 22\cdot 71^{9} +O(71^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 50 + 59\cdot 71 + 21\cdot 71^{2} + 6\cdot 71^{3} + 10\cdot 71^{4} + 47\cdot 71^{5} + 61\cdot 71^{6} + 12\cdot 71^{7} + 25\cdot 71^{8} + 18\cdot 71^{9} +O(71^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 59 + 36\cdot 71 + 29\cdot 71^{2} + 24\cdot 71^{3} + 21\cdot 71^{4} + 24\cdot 71^{5} + 69\cdot 71^{6} + 66\cdot 71^{7} + 58\cdot 71^{8} + 24\cdot 71^{9} +O(71^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,6,8,3)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$4$$(1,6,8,3)(2,5,7,4)$$0$
$2$$4$$(1,4,8,5)(2,6,7,3)$$0$
$2$$4$$(1,7,8,2)(3,4,6,5)$$0$