Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 9 a + 2 + \left(a^{2} + 2 a + 4\right)\cdot 11 + \left(8 a^{2} + 2 a + 2\right)\cdot 11^{2} + \left(9 a + 6\right)\cdot 11^{3} + \left(9 a^{2} + 6 a + 3\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 2 a^{2} + 4 a + 1 + \left(4 a^{2} + 10 a + 1\right)\cdot 11 + \left(10 a^{2} + 2 a + 9\right)\cdot 11^{2} + \left(2 a^{2} + 1\right)\cdot 11^{3} + \left(5 a^{2} + 8 a + 2\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 4 a^{2} + 2 a + 8 + \left(2 a^{2} + 4 a + 9\right)\cdot 11 + \left(4 a^{2} + 10 a + 1\right)\cdot 11^{2} + \left(10 a^{2} + 5\right)\cdot 11^{3} + \left(9 a + 2\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 2 a^{2} + 8 a + 9 + \left(7 a^{2} + 5 a + 8\right)\cdot 11 + \left(10 a^{2} + 3 a + 6\right)\cdot 11^{2} + \left(6 a^{2} + 3 a\right)\cdot 11^{3} + \left(5 a^{2} + 2 a + 5\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 9 a^{2} + 9 a + 3 + \left(5 a^{2} + 8 a + 3\right)\cdot 11 + \left(3 a^{2} + 5 a + 7\right)\cdot 11^{2} + \left(7 a^{2} + a + 7\right)\cdot 11^{3} + \left(7 a^{2} + 7 a + 1\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 5 a^{2} + a + 2 + \left(a^{2} + a + 1\right)\cdot 11 + \left(7 a^{2} + 8 a + 2\right)\cdot 11^{2} + \left(4 a^{2} + 6 a + 1\right)\cdot 11^{3} + \left(4 a^{2} + 10 a + 7\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ a^{2} + 3 a + 5 + \left(7 a^{2} + 3 a + 7\right)\cdot 11 + \left(7 a^{2} + 4 a + 7\right)\cdot 11^{2} + \left(2 a^{2} + 10\right)\cdot 11^{3} + \left(3 a^{2} + a + 7\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 9 a^{2} + 8 a + 1 + \left(6 a^{2} + 5 a + 7\right)\cdot 11 + \left(2 a + 5\right)\cdot 11^{2} + \left(2 a^{2} + 2\right)\cdot 11^{3} + \left(3 a^{2} + 2 a + 4\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
| $r_{ 9 }$ |
$=$ |
$ a^{2} + 5 + \left(8 a^{2} + 2 a + 1\right)\cdot 11 + \left(2 a^{2} + 4 a + 1\right)\cdot 11^{2} + \left(6 a^{2} + 10 a + 8\right)\cdot 11^{3} + \left(4 a^{2} + 7 a + 9\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 9 }$
| Cycle notation |
| $(1,4)(2,3)(5,6)(7,8)$ |
| $(1,3,9,2,4,7,5,6,8)$ |
| $(1,2,5)(3,4,6)(7,8,9)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 9 }$
| Character values |
| | |
$c1$ |
$c2$ |
$c3$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
$2$ |
| $9$ |
$2$ |
$(1,4)(2,3)(5,6)(7,8)$ |
$0$ |
$0$ |
$0$ |
| $2$ |
$3$ |
$(1,2,5)(3,4,6)(7,8,9)$ |
$-1$ |
$-1$ |
$-1$ |
| $2$ |
$9$ |
$(1,3,9,2,4,7,5,6,8)$ |
$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ |
$\zeta_{9}^{5} + \zeta_{9}^{4}$ |
$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ |
| $2$ |
$9$ |
$(1,9,4,5,8,3,2,7,6)$ |
$\zeta_{9}^{5} + \zeta_{9}^{4}$ |
$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ |
$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ |
| $2$ |
$9$ |
$(1,4,8,2,6,9,5,3,7)$ |
$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ |
$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ |
$\zeta_{9}^{5} + \zeta_{9}^{4}$ |
The blue line marks the conjugacy class containing complex conjugation.