Properties

Label 2.552.4t3.a
Dimension $2$
Group $D_{4}$
Conductor $552$
Indicator $1$

Related objects

Learn more

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:\(552\)\(\medspace = 2^{3} \cdot 3 \cdot 23 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 4.0.12696.2
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Projective image: $C_2^2$
Projective field: \(\Q(\sqrt{6}, \sqrt{-23})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 5 + 11\cdot 29 + 23\cdot 29^{2} + 6\cdot 29^{3} + 10\cdot 29^{4} +O(29^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 6 + 4\cdot 29 + 21\cdot 29^{2} + 19\cdot 29^{3} + 4\cdot 29^{4} +O(29^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 8 + 3\cdot 29 + 12\cdot 29^{2} + 13\cdot 29^{4} +O(29^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 11 + 10\cdot 29 + 29^{2} + 2\cdot 29^{3} + 29^{4} +O(29^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,4)$ $-2$
$2$ $2$ $(1,3)(2,4)$ $0$
$2$ $2$ $(1,2)$ $0$
$2$ $4$ $(1,4,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.