Properties

Label 2.536.7t2.a.b
Dimension $2$
Group $D_{7}$
Conductor $536$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{7}$
Conductor: \(536\)\(\medspace = 2^{3} \cdot 67 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 7.1.153990656.1
Galois orbit size: $3$
Smallest permutation container: $D_{7}$
Parity: odd
Determinant: 1.536.2t1.b.a
Projective image: $D_7$
Projective stem field: Galois closure of 7.1.153990656.1

Defining polynomial

$f(x)$$=$ \( x^{7} - 2x^{6} + 2x^{5} - x^{3} - 6x^{2} - 6x - 4 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: \( x^{2} + 18x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 17 a + 7 + 9 a\cdot 19 + \left(7 a + 11\right)\cdot 19^{2} + \left(2 a + 3\right)\cdot 19^{3} + \left(9 a + 4\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 16 a + 18 + \left(14 a + 9\right)\cdot 19 + \left(17 a + 18\right)\cdot 19^{2} + 18 a\cdot 19^{3} + \left(17 a + 4\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 6 + 6\cdot 19 + 8\cdot 19^{2} + 11\cdot 19^{3} + 6\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 13 a + 7 + \left(10 a + 1\right)\cdot 19 + \left(5 a + 16\right)\cdot 19^{2} + 3\cdot 19^{3} + \left(12 a + 8\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 2 a + 5 + \left(9 a + 12\right)\cdot 19 + \left(11 a + 8\right)\cdot 19^{2} + \left(16 a + 17\right)\cdot 19^{3} + \left(9 a + 10\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 6 a + 1 + \left(8 a + 18\right)\cdot 19 + \left(13 a + 10\right)\cdot 19^{2} + \left(18 a + 17\right)\cdot 19^{3} + 6 a\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 3 a + 15 + \left(4 a + 8\right)\cdot 19 + \left(a + 2\right)\cdot 19^{2} + 2\cdot 19^{3} + \left(a + 3\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,7)(2,6)(3,4)$
$(1,2)(3,7)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$2$
$7$$2$$(1,7)(2,6)(3,4)$$0$
$2$$7$$(1,3,5,4,7,2,6)$$\zeta_{7}^{4} + \zeta_{7}^{3}$
$2$$7$$(1,5,7,6,3,4,2)$$-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$
$2$$7$$(1,4,6,5,2,3,7)$$\zeta_{7}^{5} + \zeta_{7}^{2}$

The blue line marks the conjugacy class containing complex conjugation.