Properties

Label 2.535.7t2.a
Dimension $2$
Group $D_{7}$
Conductor $535$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{7}$
Conductor:\(535\)\(\medspace = 5 \cdot 107 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 7.1.153130375.1
Galois orbit size: $3$
Smallest permutation container: $D_{7}$
Parity: odd
Projective image: $D_7$
Projective field: Galois closure of 7.1.153130375.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{2} + 12x + 2 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 6 a + 6 + \left(8 a + 4\right)\cdot 13 + 11\cdot 13^{2} + \left(8 a + 11\right)\cdot 13^{3} + \left(5 a + 8\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 10 a + 5 + \left(9 a + 5\right)\cdot 13 + \left(a + 4\right)\cdot 13^{2} + \left(11 a + 10\right)\cdot 13^{3} + \left(7 a + 11\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 12 + 9\cdot 13 + 7\cdot 13^{2} + 2\cdot 13^{3} + 10\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 8 a + 11 + \left(12 a + 7\right)\cdot 13 + \left(2 a + 12\right)\cdot 13^{2} + \left(5 a + 5\right)\cdot 13^{3} + \left(8 a + 1\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 3 a + 2 + \left(3 a + 5\right)\cdot 13 + \left(11 a + 9\right)\cdot 13^{2} + \left(a + 6\right)\cdot 13^{3} + \left(5 a + 8\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 7 a + 12 + \left(4 a + 6\right)\cdot 13 + \left(12 a + 3\right)\cdot 13^{2} + \left(4 a + 6\right)\cdot 13^{3} + \left(7 a + 6\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 5 a + 6 + 12\cdot 13 + \left(10 a + 2\right)\cdot 13^{2} + \left(7 a + 8\right)\cdot 13^{3} + \left(4 a + 4\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,4)(2,7)(3,6)$
$(1,7)(2,6)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$ $c2$ $c3$
$1$ $1$ $()$ $2$ $2$ $2$
$7$ $2$ $(1,4)(2,7)(3,6)$ $0$ $0$ $0$
$2$ $7$ $(1,4,7,6,5,3,2)$ $-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$ $\zeta_{7}^{4} + \zeta_{7}^{3}$ $\zeta_{7}^{5} + \zeta_{7}^{2}$
$2$ $7$ $(1,7,5,2,4,6,3)$ $\zeta_{7}^{5} + \zeta_{7}^{2}$ $-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$ $\zeta_{7}^{4} + \zeta_{7}^{3}$
$2$ $7$ $(1,6,2,7,3,4,5)$ $\zeta_{7}^{4} + \zeta_{7}^{3}$ $\zeta_{7}^{5} + \zeta_{7}^{2}$ $-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$
The blue line marks the conjugacy class containing complex conjugation.