Properties

Label 2.53361.8t5.b.a
Dimension $2$
Group $Q_8$
Conductor $53361$
Root number $1$
Indicator $-1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8$
Conductor: \(53361\)\(\medspace = 3^{2} \cdot 7^{2} \cdot 11^{2} \)
Frobenius-Schur indicator: $-1$
Root number: $1$
Artin field: Galois closure of 8.0.151939915084881.1
Galois orbit size: $1$
Smallest permutation container: $Q_8$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{21}, \sqrt{33})\)

Defining polynomial

$f(x)$$=$ \( x^{8} - x^{7} + 50x^{6} + 71x^{5} + 529x^{4} + 2173x^{3} + 842x^{2} + 5545x + 17623 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 6 + 22\cdot 67 + 21\cdot 67^{2} + 22\cdot 67^{3} + 56\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 14 + 4\cdot 67 + 3\cdot 67^{2} + 14\cdot 67^{3} + 4\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 17 + 49\cdot 67 + 36\cdot 67^{2} + 12\cdot 67^{3} + 38\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 18 + 14\cdot 67 + 51\cdot 67^{2} + 19\cdot 67^{3} + 51\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 21 + 30\cdot 67 + 51\cdot 67^{2} + 62\cdot 67^{3} + 17\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 34 + 25\cdot 67 + 41\cdot 67^{2} + 51\cdot 67^{3} + 22\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 38 + 33\cdot 67 + 7\cdot 67^{2} + 41\cdot 67^{3} + 58\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 54 + 21\cdot 67 + 55\cdot 67^{2} + 43\cdot 67^{3} + 18\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,4,7)(2,8,5,3)$
$(1,4)(2,5)(3,8)(6,7)$
$(1,3,4,8)(2,6,5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,4)(2,5)(3,8)(6,7)$$-2$
$2$$4$$(1,6,4,7)(2,8,5,3)$$0$
$2$$4$$(1,3,4,8)(2,6,5,7)$$0$
$2$$4$$(1,5,4,2)(3,6,8,7)$$0$