Basic invariants
Dimension: | $2$ |
Group: | $Q_8$ |
Conductor: | \(53361\)\(\medspace = 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
Frobenius-Schur indicator: | $-1$ |
Root number: | $-1$ |
Artin field: | Galois closure of 8.8.151939915084881.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $Q_8$ |
Parity: | even |
Determinant: | 1.1.1t1.a.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{21}, \sqrt{33})\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{8} - 3x^{7} - 62x^{6} + 66x^{5} + 1125x^{4} + 264x^{3} - 4982x^{2} - 4245x + 823 \) . |
The roots of $f$ are computed in $\Q_{ 167 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 6 + 140\cdot 167 + 18\cdot 167^{2} + 39\cdot 167^{3} + 151\cdot 167^{4} +O(167^{5})\) |
$r_{ 2 }$ | $=$ | \( 9 + 11\cdot 167 + 160\cdot 167^{2} + 89\cdot 167^{3} + 105\cdot 167^{4} +O(167^{5})\) |
$r_{ 3 }$ | $=$ | \( 22 + 119\cdot 167 + 72\cdot 167^{2} + 159\cdot 167^{3} + 117\cdot 167^{4} +O(167^{5})\) |
$r_{ 4 }$ | $=$ | \( 29 + 159\cdot 167 + 119\cdot 167^{2} + 95\cdot 167^{3} + 154\cdot 167^{4} +O(167^{5})\) |
$r_{ 5 }$ | $=$ | \( 31 + 4\cdot 167 + 82\cdot 167^{2} + 40\cdot 167^{3} + 164\cdot 167^{4} +O(167^{5})\) |
$r_{ 6 }$ | $=$ | \( 88 + 14\cdot 167 + 73\cdot 167^{2} + 95\cdot 167^{3} + 119\cdot 167^{4} +O(167^{5})\) |
$r_{ 7 }$ | $=$ | \( 154 + 152\cdot 167 + 91\cdot 167^{2} + 12\cdot 167^{3} + 84\cdot 167^{4} +O(167^{5})\) |
$r_{ 8 }$ | $=$ | \( 165 + 66\cdot 167 + 49\cdot 167^{2} + 135\cdot 167^{3} + 104\cdot 167^{4} +O(167^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 8 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 8 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | ✓ |
$1$ | $2$ | $(1,7)(2,3)(4,8)(5,6)$ | $-2$ | |
$2$ | $4$ | $(1,3,7,2)(4,6,8,5)$ | $0$ | |
$2$ | $4$ | $(1,8,7,4)(2,5,3,6)$ | $0$ | |
$2$ | $4$ | $(1,6,7,5)(2,8,3,4)$ | $0$ |