Properties

Label 2.53361.8t5.a
Dimension $2$
Group $Q_8$
Conductor $53361$
Indicator $-1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$Q_8$
Conductor:\(53361\)\(\medspace = 3^{2} \cdot 7^{2} \cdot 11^{2} \)
Frobenius-Schur indicator: $-1$
Root number: $-1$
Artin number field: Galois closure of 8.8.151939915084881.1
Galois orbit size: $1$
Smallest permutation container: $Q_8$
Parity: even
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{21}, \sqrt{33})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 167 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 6 + 140\cdot 167 + 18\cdot 167^{2} + 39\cdot 167^{3} + 151\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 9 + 11\cdot 167 + 160\cdot 167^{2} + 89\cdot 167^{3} + 105\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 22 + 119\cdot 167 + 72\cdot 167^{2} + 159\cdot 167^{3} + 117\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 29 + 159\cdot 167 + 119\cdot 167^{2} + 95\cdot 167^{3} + 154\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 31 + 4\cdot 167 + 82\cdot 167^{2} + 40\cdot 167^{3} + 164\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 88 + 14\cdot 167 + 73\cdot 167^{2} + 95\cdot 167^{3} + 119\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 154 + 152\cdot 167 + 91\cdot 167^{2} + 12\cdot 167^{3} + 84\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 165 + 66\cdot 167 + 49\cdot 167^{2} + 135\cdot 167^{3} + 104\cdot 167^{4} +O(167^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,7,4)(2,5,3,6)$
$(1,7)(2,3)(4,8)(5,6)$
$(1,3,7,2)(4,6,8,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,7)(2,3)(4,8)(5,6)$ $-2$
$2$ $4$ $(1,3,7,2)(4,6,8,5)$ $0$
$2$ $4$ $(1,8,7,4)(2,5,3,6)$ $0$
$2$ $4$ $(1,6,7,5)(2,8,3,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.