Properties

Label 2.523.5t2.1c1
Dimension 2
Group $D_{5}$
Conductor $ 523 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{5}$
Conductor:$523 $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 3 x^{3} + 5 x^{2} - x + 3 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{5}$
Parity: Odd
Determinant: 1.523.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ a + 32 + \left(31 a + 36\right)\cdot 37 + \left(14 a + 31\right)\cdot 37^{2} + \left(3 a + 7\right)\cdot 37^{3} + \left(32 a + 8\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 + 36\cdot 37 + 30\cdot 37^{3} + 26\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 33 + \left(31 a + 28\right)\cdot 37 + \left(12 a + 35\right)\cdot 37^{2} + \left(13 a + 12\right)\cdot 37^{3} + \left(31 a + 26\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 36 a + 36 + \left(5 a + 11\right)\cdot 37 + \left(22 a + 23\right)\cdot 37^{2} + \left(33 a + 6\right)\cdot 37^{3} + \left(4 a + 22\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 28 a + 32 + \left(5 a + 33\right)\cdot 37 + \left(24 a + 18\right)\cdot 37^{2} + \left(23 a + 16\right)\cdot 37^{3} + \left(5 a + 27\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)(3,4)$
$(1,5)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$2$
$5$$2$$(1,2)(3,4)$$0$
$2$$5$$(1,4,3,2,5)$$\zeta_{5}^{3} + \zeta_{5}^{2}$
$2$$5$$(1,3,5,4,2)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - 1$
The blue line marks the conjugacy class containing complex conjugation.