Basic invariants
Dimension: | $2$ |
Group: | $S_3\times C_3$ |
Conductor: | \(52\)\(\medspace = 2^{2} \cdot 13 \) |
Artin stem field: | Galois closure of 6.0.10816.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $S_3\times C_3$ |
Parity: | odd |
Determinant: | 1.52.6t1.b.b |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.676.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{6} - x^{4} - 2x^{3} + 2x + 1 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$:
\( x^{2} + 29x + 3 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 9 a + 19 + \left(14 a + 8\right)\cdot 31 + \left(17 a + 2\right)\cdot 31^{2} + \left(25 a + 4\right)\cdot 31^{3} + \left(23 a + 25\right)\cdot 31^{4} +O(31^{5})\)
$r_{ 2 }$ |
$=$ |
\( 6 a + 21 + \left(23 a + 13\right)\cdot 31 + \left(18 a + 21\right)\cdot 31^{2} + \left(26 a + 15\right)\cdot 31^{3} + \left(25 a + 21\right)\cdot 31^{4} +O(31^{5})\)
| $r_{ 3 }$ |
$=$ |
\( 25 a + 2 + \left(7 a + 23\right)\cdot 31 + \left(12 a + 4\right)\cdot 31^{2} + \left(4 a + 19\right)\cdot 31^{3} + \left(5 a + 15\right)\cdot 31^{4} +O(31^{5})\)
| $r_{ 4 }$ |
$=$ |
\( 11 a + 27 + \left(9 a + 5\right)\cdot 31 + \left(14 a + 11\right)\cdot 31^{2} + \left(20 a + 10\right)\cdot 31^{3} + \left(28 a + 4\right)\cdot 31^{4} +O(31^{5})\)
| $r_{ 5 }$ |
$=$ |
\( 22 a + 6 + \left(16 a + 28\right)\cdot 31 + \left(13 a + 22\right)\cdot 31^{2} + \left(5 a + 6\right)\cdot 31^{3} + \left(7 a + 16\right)\cdot 31^{4} +O(31^{5})\)
| $r_{ 6 }$ |
$=$ |
\( 20 a + 18 + \left(21 a + 13\right)\cdot 31 + \left(16 a + 30\right)\cdot 31^{2} + \left(10 a + 5\right)\cdot 31^{3} + \left(2 a + 10\right)\cdot 31^{4} +O(31^{5})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$3$ | $2$ | $(1,5)(2,3)(4,6)$ | $0$ |
$1$ | $3$ | $(1,2,6)(3,4,5)$ | $-2 \zeta_{3} - 2$ |
$1$ | $3$ | $(1,6,2)(3,5,4)$ | $2 \zeta_{3}$ |
$2$ | $3$ | $(3,4,5)$ | $-\zeta_{3}$ |
$2$ | $3$ | $(3,5,4)$ | $\zeta_{3} + 1$ |
$2$ | $3$ | $(1,2,6)(3,5,4)$ | $-1$ |
$3$ | $6$ | $(1,4,2,5,6,3)$ | $0$ |
$3$ | $6$ | $(1,3,6,5,2,4)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.