Properties

Label 2.519.9t3.a
Dimension $2$
Group $D_{9}$
Conductor $519$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:\(519\)\(\medspace = 3 \cdot 173 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 9.1.72555348321.1
Galois orbit size: $3$
Smallest permutation container: $D_{9}$
Parity: odd
Projective image: $D_9$
Projective field: Galois closure of 9.1.72555348321.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{3} + 2x + 11 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 7 a^{2} + 5 a + 1 + \left(a^{2} + 9 a + 5\right)\cdot 13 + \left(2 a^{2} + a + 1\right)\cdot 13^{2} + \left(11 a^{2} + 5 a + 6\right)\cdot 13^{3} + \left(9 a^{2} + 9 a + 10\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 8 a^{2} + 5 a + 9 + \left(10 a^{2} + 7 a\right)\cdot 13 + \left(6 a^{2} + 8 a + 6\right)\cdot 13^{2} + \left(11 a^{2} + a + 11\right)\cdot 13^{3} + \left(7 a^{2} + 3 a + 12\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 11 a^{2} + 6 a + 2 + \left(a^{2} + a + 1\right)\cdot 13 + \left(4 a^{2} + 7 a + 4\right)\cdot 13^{2} + \left(6 a^{2} + 10 a + 8\right)\cdot 13^{3} + \left(10 a^{2} + 3 a + 2\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( a + 7 + \left(6 a^{2} + 8 a + 7\right)\cdot 13 + \left(5 a^{2} + 6 a + 8\right)\cdot 13^{2} + \left(12 a + 9\right)\cdot 13^{3} + \left(12 a^{2} + 2 a + 9\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 8 a^{2} + 2 a + 11 + \left(9 a^{2} + 2 a + 2\right)\cdot 13 + \left(6 a^{2} + 4 a + 3\right)\cdot 13^{2} + \left(8 a^{2} + 10 a + 11\right)\cdot 13^{3} + \left(5 a^{2} + 12 a + 4\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( a^{2} + 12 a + 8 + \left(7 a^{2} + 3 a + 2\right)\cdot 13 + \left(6 a^{2} + 9 a\right)\cdot 13^{2} + \left(8 a^{2} + 8 a + 11\right)\cdot 13^{3} + \left(a^{2} + 8 a + 6\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 5 a + 11 + \left(12 a^{2} + 11 a + 4\right)\cdot 13 + \left(5 a^{2} + 6 a + 12\right)\cdot 13^{2} + \left(a^{2} + 3 a + 5\right)\cdot 13^{3} + \left(a^{2} + 6 a + 10\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 5 a^{2} + 7 a + 5 + \left(9 a^{2} + 10 a + 3\right)\cdot 13 + \left(10 a + 2\right)\cdot 13^{2} + \left(a^{2} + 11 a + 6\right)\cdot 13^{3} + \left(6 a^{2} + 6 a + 10\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 12 a^{2} + 9 a + 1 + \left(6 a^{2} + 10 a + 11\right)\cdot 13 + 9 a\cdot 13^{2} + \left(3 a^{2} + 8\right)\cdot 13^{3} + \left(10 a^{2} + 11 a + 9\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3,5)(2,8,4)(6,9,7)$
$(1,7,8,3,6,4,5,9,2)$
$(1,4)(2,5)(3,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$ $c3$
$1$ $1$ $()$ $2$ $2$ $2$
$9$ $2$ $(1,4)(2,5)(3,8)(6,7)$ $0$ $0$ $0$
$2$ $3$ $(1,3,5)(2,8,4)(6,9,7)$ $-1$ $-1$ $-1$
$2$ $9$ $(1,7,8,3,6,4,5,9,2)$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ $\zeta_{9}^{5} + \zeta_{9}^{4}$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$ $9$ $(1,8,6,5,2,7,3,4,9)$ $\zeta_{9}^{5} + \zeta_{9}^{4}$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$ $9$ $(1,6,2,3,9,8,5,7,4)$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ $\zeta_{9}^{5} + \zeta_{9}^{4}$
The blue line marks the conjugacy class containing complex conjugation.