Properties

Label 2.5141.4t3.c.a
Dimension $2$
Group $D_4$
Conductor $5141$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_4$
Conductor: \(5141\)\(\medspace = 53 \cdot 97 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin field: Galois closure of 8.0.698538609674161.2
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: even
Determinant: 1.5141.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{53}, \sqrt{97})\)

Defining polynomial

$f(x)$$=$ \( x^{8} - 2x^{7} + 41x^{6} - 20x^{5} + 704x^{4} + 76x^{3} + 1439x^{2} + 13522x + 21103 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 6.

Roots:
$r_{ 1 }$ $=$ \( 22\cdot 47 + 42\cdot 47^{2} + 22\cdot 47^{3} + 27\cdot 47^{4} + 43\cdot 47^{5} +O(47^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 5 + 28\cdot 47 + 3\cdot 47^{2} + 12\cdot 47^{3} + 44\cdot 47^{4} + 16\cdot 47^{5} +O(47^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 11 + 42\cdot 47 + 46\cdot 47^{2} + 3\cdot 47^{3} + 41\cdot 47^{4} + 41\cdot 47^{5} +O(47^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 14 + 15\cdot 47 + 2\cdot 47^{2} + 26\cdot 47^{3} + 12\cdot 47^{4} + 31\cdot 47^{5} +O(47^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 18 + 8\cdot 47 + 41\cdot 47^{2} + 4\cdot 47^{3} + 43\cdot 47^{4} + 3\cdot 47^{5} +O(47^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 19 + 21\cdot 47 + 10\cdot 47^{2} + 15\cdot 47^{3} + 29\cdot 47^{4} + 4\cdot 47^{5} +O(47^{6})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 37 + 21\cdot 47 + 27\cdot 47^{2} + 45\cdot 47^{3} + 25\cdot 47^{4} + 28\cdot 47^{5} +O(47^{6})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 39 + 28\cdot 47 + 13\cdot 47^{2} + 10\cdot 47^{3} + 11\cdot 47^{4} + 17\cdot 47^{5} +O(47^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,8)(4,7)(5,6)$
$(1,2)(3,7)(4,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,6)(2,4)(3,5)(7,8)$$-2$
$2$$2$$(1,2)(3,7)(4,6)(5,8)$$0$
$2$$2$$(1,3)(2,8)(4,7)(5,6)$$0$
$2$$4$$(1,8,6,7)(2,3,4,5)$$0$