Properties

Label 2.5141.4t3.b.a
Dimension $2$
Group $D_{4}$
Conductor $5141$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(5141\)\(\medspace = 53 \cdot 97 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.272473.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: even
Determinant: 1.5141.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{53}, \sqrt{97})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} - x^{2} - 6x + 36 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 19 + 34\cdot 43 + 32\cdot 43^{2} + 10\cdot 43^{3} + 36\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 32 + 28\cdot 43 + 23\cdot 43^{2} + 5\cdot 43^{3} + 35\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 37 + 18\cdot 43 + 37\cdot 43^{2} + 23\cdot 43^{3} + 12\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 42 + 3\cdot 43 + 35\cdot 43^{2} + 2\cdot 43^{3} + 2\cdot 43^{4} +O(43^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)$$-2$
$2$$2$$(1,3)(2,4)$$0$
$2$$2$$(1,2)$$0$
$2$$4$$(1,4,2,3)$$0$