Basic invariants
Dimension: | $2$ |
Group: | $D_{4}$ |
Conductor: | \(5141\)\(\medspace = 53 \cdot 97 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.0.272473.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{4}$ |
Parity: | even |
Determinant: | 1.5141.2t1.a.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{53}, \sqrt{97})\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{4} - x^{3} - x^{2} - 6x + 36 \) . |
The roots of $f$ are computed in $\Q_{ 43 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 19 + 34\cdot 43 + 32\cdot 43^{2} + 10\cdot 43^{3} + 36\cdot 43^{4} +O(43^{5})\) |
$r_{ 2 }$ | $=$ | \( 32 + 28\cdot 43 + 23\cdot 43^{2} + 5\cdot 43^{3} + 35\cdot 43^{4} +O(43^{5})\) |
$r_{ 3 }$ | $=$ | \( 37 + 18\cdot 43 + 37\cdot 43^{2} + 23\cdot 43^{3} + 12\cdot 43^{4} +O(43^{5})\) |
$r_{ 4 }$ | $=$ | \( 42 + 3\cdot 43 + 35\cdot 43^{2} + 2\cdot 43^{3} + 2\cdot 43^{4} +O(43^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | |
$1$ | $2$ | $(1,2)(3,4)$ | $-2$ | ✓ |
$2$ | $2$ | $(1,3)(2,4)$ | $0$ | |
$2$ | $2$ | $(1,2)$ | $0$ | |
$2$ | $4$ | $(1,4,2,3)$ | $0$ |