Properties

Label 2.491.9t3.1c2
Dimension 2
Group $D_{9}$
Conductor $ 491 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$491 $
Artin number field: Splitting field of $f= x^{9} - 2 x^{8} - 2 x^{7} + 8 x^{5} + 6 x^{4} - 5 x^{3} - 2 x^{2} + 4 x + 8 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.491.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{3} + 7 x + 59 $
Roots:
$r_{ 1 }$ $=$ $ 56 a^{2} + 3 a + 44 + \left(29 a^{2} + 49 a + 10\right)\cdot 61 + \left(57 a^{2} + 29 a + 32\right)\cdot 61^{2} + \left(43 a^{2} + 36 a + 52\right)\cdot 61^{3} + \left(49 a^{2} + 16 a + 42\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 35 a^{2} + 26 a + 3 + \left(10 a^{2} + 5 a + 36\right)\cdot 61 + \left(28 a^{2} + 30 a + 26\right)\cdot 61^{2} + \left(4 a^{2} + 57 a + 10\right)\cdot 61^{3} + \left(8 a + 14\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 41 a^{2} + 49 a + 35 + \left(19 a^{2} + a + 3\right)\cdot 61 + \left(57 a^{2} + 11 a + 11\right)\cdot 61^{2} + \left(47 a^{2} + 38 a + 10\right)\cdot 61^{3} + \left(6 a^{2} + 4 a + 5\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 25 a^{2} + 9 a + 1 + \left(11 a^{2} + 10 a + 26\right)\cdot 61 + \left(7 a^{2} + 20 a + 41\right)\cdot 61^{2} + \left(30 a^{2} + 47 a + 28\right)\cdot 61^{3} + \left(4 a^{2} + 39 a + 55\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 11 a^{2} + 30 a + 23 + \left(8 a^{2} + 31 a + 58\right)\cdot 61 + \left(52 a^{2} + 17 a + 14\right)\cdot 61^{2} + \left(53 a^{2} + 19 a + 48\right)\cdot 61^{3} + \left(24 a^{2} + 9 a + 6\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 44 a^{2} + 2 a + 55 + \left(35 a^{2} + 7 a + 3\right)\cdot 61 + \left(55 a^{2} + 16 a + 31\right)\cdot 61^{2} + \left(12 a^{2} + 35 a + 60\right)\cdot 61^{3} + \left(42 a^{2} + 56 a + 46\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 23 a^{2} + 55 a + 8 + \left(35 a^{2} + a + 50\right)\cdot 61 + \left(42 a^{2} + 34 a + 32\right)\cdot 61^{2} + \left(14 a^{2} + 19 a + 17\right)\cdot 61^{3} + \left(18 a^{2} + 29 a + 58\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 6 a^{2} + 29 a + 20 + \left(17 a^{2} + 22 a + 59\right)\cdot 61 + \left(14 a^{2} + 27 a\right)\cdot 61^{2} + \left(55 a^{2} + 6 a + 14\right)\cdot 61^{3} + \left(54 a^{2} + 56 a + 45\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 3 a^{2} + 41 a + 57 + \left(15 a^{2} + 53 a + 56\right)\cdot 61 + \left(51 a^{2} + 57 a + 52\right)\cdot 61^{2} + \left(41 a^{2} + 44 a + 1\right)\cdot 61^{3} + \left(42 a^{2} + 22 a + 30\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,2)(3,7)(4,9)(5,6)$
$(1,2,5,4,7,8,3,9,6)$
$(1,4,3)(2,7,9)(5,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,2)(3,7)(4,9)(5,6)$$0$
$2$$3$$(1,4,3)(2,7,9)(5,8,6)$$-1$
$2$$9$$(1,2,5,4,7,8,3,9,6)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
$2$$9$$(1,5,7,3,6,2,4,8,9)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$$9$$(1,7,6,4,9,5,3,2,8)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.