Properties

Label 2.4825.3t2.a.a
Dimension $2$
Group $S_3$
Conductor $4825$
Root number $1$
Indicator $1$

Related objects

Learn more

Basic invariants

Dimension: $2$
Group: $S_3$
Conductor: \(4825\)\(\medspace = 5^{2} \cdot 193 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: 3.3.4825.1
Galois orbit size: $1$
Smallest permutation container: $S_3$
Parity: even
Determinant: 1.193.2t1.a.a
Projective image: $S_3$
Projective stem field: 3.3.4825.1

Defining polynomial

$f(x)$$=$\(x^{3} - x^{2} - 18 x - 8\)  Toggle raw display.

The roots of $f$ are computed in $\Q_{ 107 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 52 + 6\cdot 107 + 35\cdot 107^{2} + 99\cdot 107^{3} + 82\cdot 107^{4} +O(107^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 69 + 101\cdot 107 + 100\cdot 107^{2} + 7\cdot 107^{3} + 53\cdot 107^{4} +O(107^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 94 + 105\cdot 107 + 77\cdot 107^{2} + 106\cdot 107^{3} + 77\cdot 107^{4} +O(107^{5})\)  Toggle raw display

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character value
$1$$1$$()$$2$
$3$$2$$(1,2)$$0$
$2$$3$$(1,2,3)$$-1$

The blue line marks the conjugacy class containing complex conjugation.