Properties

Label 2.4751.7t2.1
Dimension 2
Group $D_{7}$
Conductor $ 4751 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{7}$
Conductor:$4751 $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 3 x^{5} - 5 x^{4} + 60 x^{3} + 100 x^{2} - 16 x - 599 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{7}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 + 16\cdot 19 + 5\cdot 19^{2} + 18\cdot 19^{3} + 12\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 a + 7 + 11 a\cdot 19 + \left(9 a + 8\right)\cdot 19^{2} + \left(4 a + 15\right)\cdot 19^{3} + \left(17 a + 16\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 15 + \left(15 a + 14\right)\cdot 19 + \left(7 a + 6\right)\cdot 19^{2} + \left(4 a + 14\right)\cdot 19^{3} + 3 a\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 15 + \left(7 a + 3\right)\cdot 19 + \left(9 a + 6\right)\cdot 19^{2} + \left(14 a + 10\right)\cdot 19^{3} + \left(a + 10\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 a + 3 + \left(8 a + 16\right)\cdot 19 + \left(8 a + 5\right)\cdot 19^{2} + \left(11 a + 11\right)\cdot 19^{3} + 13\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 2 + \left(3 a + 5\right)\cdot 19 + \left(11 a + 18\right)\cdot 19^{2} + \left(14 a + 10\right)\cdot 19^{3} + \left(15 a + 18\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 14 a + 8 + 10 a\cdot 19 + \left(10 a + 6\right)\cdot 19^{2} + \left(7 a + 14\right)\cdot 19^{3} + \left(18 a + 2\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,6)(2,5)(3,4)$
$(1,4)(2,7)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$ $c2$ $c3$
$1$ $1$ $()$ $2$ $2$ $2$
$7$ $2$ $(1,6)(2,5)(3,4)$ $0$ $0$ $0$
$2$ $7$ $(1,6,4,5,7,2,3)$ $-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$ $\zeta_{7}^{4} + \zeta_{7}^{3}$ $\zeta_{7}^{5} + \zeta_{7}^{2}$
$2$ $7$ $(1,4,7,3,6,5,2)$ $\zeta_{7}^{5} + \zeta_{7}^{2}$ $-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$ $\zeta_{7}^{4} + \zeta_{7}^{3}$
$2$ $7$ $(1,5,3,4,2,6,7)$ $\zeta_{7}^{4} + \zeta_{7}^{3}$ $\zeta_{7}^{5} + \zeta_{7}^{2}$ $-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$
The blue line marks the conjugacy class containing complex conjugation.