Properties

Label 2.475.4t3.b.a
Dimension $2$
Group $D_{4}$
Conductor $475$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(475\)\(\medspace = 5^{2} \cdot 19 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.2.2375.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.19.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{5}, \sqrt{-19})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} + x^{2} - 6x - 4 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 131 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 59 + 98\cdot 131 + 38\cdot 131^{2} + 44\cdot 131^{3} + 68\cdot 131^{4} +O(131^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 84 + 106\cdot 131 + 47\cdot 131^{2} + 95\cdot 131^{3} + 15\cdot 131^{4} +O(131^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 123 + 15\cdot 131 + 53\cdot 131^{2} + 54\cdot 131^{3} + 38\cdot 131^{4} +O(131^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 128 + 40\cdot 131 + 122\cdot 131^{2} + 67\cdot 131^{3} + 8\cdot 131^{4} +O(131^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)$$-2$
$2$$2$$(1,3)(2,4)$$0$
$2$$2$$(1,2)$$0$
$2$$4$$(1,4,2,3)$$0$