Basic invariants
Dimension: | $2$ |
Group: | $D_{4}$ |
Conductor: | \(475\)\(\medspace = 5^{2} \cdot 19 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin number field: | Galois closure of 4.2.2375.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{4}$ |
Parity: | odd |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{5}, \sqrt{-19})\) |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 131 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ |
\( 59 + 98\cdot 131 + 38\cdot 131^{2} + 44\cdot 131^{3} + 68\cdot 131^{4} +O(131^{5})\)
|
$r_{ 2 }$ | $=$ |
\( 84 + 106\cdot 131 + 47\cdot 131^{2} + 95\cdot 131^{3} + 15\cdot 131^{4} +O(131^{5})\)
|
$r_{ 3 }$ | $=$ |
\( 123 + 15\cdot 131 + 53\cdot 131^{2} + 54\cdot 131^{3} + 38\cdot 131^{4} +O(131^{5})\)
|
$r_{ 4 }$ | $=$ |
\( 128 + 40\cdot 131 + 122\cdot 131^{2} + 67\cdot 131^{3} + 8\cdot 131^{4} +O(131^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character values |
$c1$ | |||
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,2)(3,4)$ | $-2$ |
$2$ | $2$ | $(1,3)(2,4)$ | $0$ |
$2$ | $2$ | $(1,2)$ | $0$ |
$2$ | $4$ | $(1,4,2,3)$ | $0$ |