Properties

Label 2.43_53.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 43 \cdot 53 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2279= 43 \cdot 53 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 45 x^{6} - 98 x^{5} + 514 x^{4} - 1164 x^{3} + 2480 x^{2} - 3910 x + 2423 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.43_53.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 281 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 228\cdot 281 + 22\cdot 281^{2} + 275\cdot 281^{3} + 3\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 26 + 275\cdot 281 + 18\cdot 281^{2} + 187\cdot 281^{3} + 19\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 72 + 93\cdot 281 + 223\cdot 281^{2} + 159\cdot 281^{3} + 71\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 79 + 257\cdot 281 + 80\cdot 281^{2} + 256\cdot 281^{3} + 219\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 200 + 238\cdot 281 + 87\cdot 281^{2} + 29\cdot 281^{3} + 38\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 214 + 4\cdot 281 + 84\cdot 281^{2} + 222\cdot 281^{3} + 53\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 258 + 71\cdot 281 + 93\cdot 281^{2} + 89\cdot 281^{3} + 3\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 265 + 235\cdot 281 + 231\cdot 281^{2} + 185\cdot 281^{3} + 151\cdot 281^{4} +O\left(281^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,6,8)(2,7,5,4)$
$(1,2)(3,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,5)(3,8)(4,7)$$-2$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,7)(2,3)(4,6)(5,8)$$0$
$2$$4$$(1,3,6,8)(2,7,5,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.