Properties

Label 2.41e2_257.6t3.1c1
Dimension 2
Group $D_{6}$
Conductor $ 41^{2} \cdot 257 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$432017= 41^{2} \cdot 257 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 39 x^{4} + 23 x^{3} + 329 x^{2} - 195 x - 333 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Even
Determinant: 1.257.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 25\cdot 37 + 18\cdot 37^{2} + 4\cdot 37^{3} + 9\cdot 37^{4} + 16\cdot 37^{5} + 37^{6} + 24\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 2 + 16\cdot 37 + 35\cdot 37^{2} + 24\cdot 37^{3} + 19\cdot 37^{4} + 30\cdot 37^{5} + 14\cdot 37^{6} + 17\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 26 a + 32 + \left(7 a + 19\right)\cdot 37 + \left(26 a + 29\right)\cdot 37^{2} + \left(20 a + 20\right)\cdot 37^{3} + \left(6 a + 4\right)\cdot 37^{4} + \left(4 a + 18\right)\cdot 37^{5} + \left(8 a + 25\right)\cdot 37^{6} + \left(35 a + 21\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 26 a + 30 + \left(7 a + 28\right)\cdot 37 + \left(26 a + 12\right)\cdot 37^{2} + 20 a\cdot 37^{3} + \left(6 a + 31\right)\cdot 37^{4} + \left(4 a + 3\right)\cdot 37^{5} + \left(8 a + 12\right)\cdot 37^{6} + \left(35 a + 28\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 11 a + 25 + \left(29 a + 24\right)\cdot 37 + \left(10 a + 15\right)\cdot 37^{2} + \left(16 a + 3\right)\cdot 37^{3} + \left(30 a + 10\right)\cdot 37^{4} + \left(32 a + 28\right)\cdot 37^{5} + \left(28 a + 16\right)\cdot 37^{6} + \left(a + 6\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 11 a + 23 + \left(29 a + 33\right)\cdot 37 + \left(10 a + 35\right)\cdot 37^{2} + \left(16 a + 19\right)\cdot 37^{3} + \left(30 a + 36\right)\cdot 37^{4} + \left(32 a + 13\right)\cdot 37^{5} + \left(28 a + 3\right)\cdot 37^{6} + \left(a + 13\right)\cdot 37^{7} +O\left(37^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(1,3)(2,4)(5,6)$
$(3,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)(5,6)$$-2$
$3$$2$$(1,3)(2,4)(5,6)$$0$
$3$$2$$(1,4)(2,3)$$0$
$2$$3$$(1,4,6)(2,3,5)$$-1$
$2$$6$$(1,5,4,2,6,3)$$1$
The blue line marks the conjugacy class containing complex conjugation.