Properties

Label 2.4195.4t3.c.a
Dimension $2$
Group $D_{4}$
Conductor $4195$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(4195\)\(\medspace = 5 \cdot 839 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.3519605.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.4195.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{5}, \sqrt{-839})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - 2x^{3} + 10x^{2} - 9x + 230 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 211 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 97 + 124\cdot 211 + 56\cdot 211^{2} + 150\cdot 211^{3} + 128\cdot 211^{4} +O(211^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 102 + 181\cdot 211 + 151\cdot 211^{2} + 161\cdot 211^{3} + 144\cdot 211^{4} +O(211^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 110 + 29\cdot 211 + 59\cdot 211^{2} + 49\cdot 211^{3} + 66\cdot 211^{4} +O(211^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 115 + 86\cdot 211 + 154\cdot 211^{2} + 60\cdot 211^{3} + 82\cdot 211^{4} +O(211^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$