Properties

Label 2.4195.4t3.c
Dimension $2$
Group $D_{4}$
Conductor $4195$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:\(4195\)\(\medspace = 5 \cdot 839 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 4.0.3519605.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{5}, \sqrt{-839})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 211 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 97 + 124\cdot 211 + 56\cdot 211^{2} + 150\cdot 211^{3} + 128\cdot 211^{4} +O(211^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 102 + 181\cdot 211 + 151\cdot 211^{2} + 161\cdot 211^{3} + 144\cdot 211^{4} +O(211^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 110 + 29\cdot 211 + 59\cdot 211^{2} + 49\cdot 211^{3} + 66\cdot 211^{4} +O(211^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 115 + 86\cdot 211 + 154\cdot 211^{2} + 60\cdot 211^{3} + 82\cdot 211^{4} +O(211^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.