Properties

Label 2.419.9t3.1
Dimension 2
Group $D_{9}$
Conductor $ 419 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$419 $
Artin number field: Splitting field of $f= x^{9} - 2 x^{7} - 4 x^{6} + 4 x^{5} + 10 x^{4} - x^{3} - 8 x^{2} + 8 x + 8 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{3} + x + 40 $
Roots:
$r_{ 1 }$ $=$ $ 29 a^{2} + 4 a + 38 + \left(3 a^{2} + 38 a + 25\right)\cdot 43 + \left(3 a^{2} + 25 a + 10\right)\cdot 43^{2} + \left(19 a^{2} + 37 a\right)\cdot 43^{3} + \left(31 a^{2} + 22 a + 29\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 29 a^{2} + 24 a + 18 + \left(7 a^{2} + 40 a + 5\right)\cdot 43 + \left(19 a^{2} + 33 a + 2\right)\cdot 43^{2} + \left(27 a^{2} + 10 a + 2\right)\cdot 43^{3} + \left(42 a^{2} + 32 a + 13\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 19 a^{2} + 8 a + 24 + \left(11 a^{2} + 12\right)\cdot 43 + \left(10 a^{2} + 40 a + 23\right)\cdot 43^{2} + \left(24 a^{2} + 5 a + 30\right)\cdot 43^{3} + \left(22 a^{2} + a + 36\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 4 a^{2} + 14 + \left(8 a^{2} + 41 a + 10\right)\cdot 43 + \left(26 a^{2} + 21 a + 5\right)\cdot 43^{2} + \left(30 a^{2} + 8 a + 6\right)\cdot 43^{3} + \left(34 a^{2} + 34 a + 16\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ a^{2} + 13 a + 28 + \left(26 a^{2} + 23 a + 17\right)\cdot 43 + \left(19 a^{2} + 5 a + 2\right)\cdot 43^{2} + \left(23 a^{2} + 22 a + 28\right)\cdot 43^{3} + \left(26 a^{2} + 16\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 22 a^{2} + 35 a + 19 + \left(22 a^{2} + 17 a + 38\right)\cdot 43 + \left(31 a^{2} + 31 a\right)\cdot 43^{2} + \left(6 a^{2} + 22 a + 35\right)\cdot 43^{3} + \left(27 a^{2} + 17 a + 11\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 35 a^{2} + 4 a + 42 + \left(16 a^{2} + 30 a + 5\right)\cdot 43 + \left(8 a^{2} + 28 a + 14\right)\cdot 43^{2} + \left(17 a^{2} + 25 a + 13\right)\cdot 43^{3} + \left(27 a^{2} + 2 a + 26\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 13 a^{2} + 6 a + 36 + \left(9 a^{2} + 22 a + 20\right)\cdot 43 + \left(4 a^{2} + 3 a + 6\right)\cdot 43^{2} + \left(35 a^{2} + 10 a + 7\right)\cdot 43^{3} + \left(16 a^{2} + 10 a + 10\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 20 a^{2} + 35 a + 39 + \left(23 a^{2} + a + 34\right)\cdot 43 + \left(6 a^{2} + 24 a + 20\right)\cdot 43^{2} + \left(31 a^{2} + 28 a + 6\right)\cdot 43^{3} + \left(28 a^{2} + 7 a + 12\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,9,2,6,4,8,7,3,5)$
$(1,6,7)(2,8,5)(3,9,4)$
$(1,2)(3,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$ $c3$
$1$ $1$ $()$ $2$ $2$ $2$
$9$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$ $0$ $0$
$2$ $3$ $(1,6,7)(2,8,5)(3,9,4)$ $-1$ $-1$ $-1$
$2$ $9$ $(1,9,2,6,4,8,7,3,5)$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ $\zeta_{9}^{5} + \zeta_{9}^{4}$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$ $9$ $(1,2,4,7,5,9,6,8,3)$ $\zeta_{9}^{5} + \zeta_{9}^{4}$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$ $9$ $(1,4,5,6,3,2,7,9,8)$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ $\zeta_{9}^{5} + \zeta_{9}^{4}$
The blue line marks the conjugacy class containing complex conjugation.