Properties

Label 2.4075.3t2.a.a
Dimension $2$
Group $S_3$
Conductor $4075$
Root number $1$
Indicator $1$

Related objects

Learn more

Basic invariants

Dimension: $2$
Group: $S_3$
Conductor: \(4075\)\(\medspace = 5^{2} \cdot 163 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: 3.1.4075.1
Galois orbit size: $1$
Smallest permutation container: $S_3$
Parity: odd
Determinant: 1.163.2t1.a.a
Projective image: S_3
Projective stem field: 3.1.4075.1

Defining polynomial

$f(x)$$=$\(x^{3} - x^{2} - 13 x - 18\)  Toggle raw display.

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 10 + 23\cdot 47 + 10\cdot 47^{2} + 6\cdot 47^{3} + 16\cdot 47^{4} +O(47^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 12 + 38\cdot 47 + 17\cdot 47^{2} + 28\cdot 47^{3} + 33\cdot 47^{4} +O(47^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 26 + 32\cdot 47 + 18\cdot 47^{2} + 12\cdot 47^{3} + 44\cdot 47^{4} +O(47^{5})\)  Toggle raw display

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character value
$1$$1$$()$$2$
$3$$2$$(1,2)$$0$
$2$$3$$(1,2,3)$$-1$

The blue line marks the conjugacy class containing complex conjugation.