Basic invariants
Dimension: | $2$ |
Group: | $C_6\times S_3$ |
Conductor: | \(405\)\(\medspace = 3^{4} \cdot 5 \) |
Artin stem field: | Galois closure of 12.0.6053445140625.2 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_6\times S_3$ |
Parity: | odd |
Determinant: | 1.45.6t1.b.a |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.135.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{12} - x^{9} + 2x^{6} + x^{3} + 1 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$:
\( x^{6} + 10x^{3} + 11x^{2} + 11x + 2 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 10 a^{5} + 9 a^{4} + 10 a^{3} + 2 a^{2} + 10 a + 4 + \left(5 a^{5} + 3 a^{4} + 7 a^{3} + 2 a^{2} + 11 a + 8\right)\cdot 13 + \left(9 a^{5} + 8 a^{4} + 9 a + 11\right)\cdot 13^{2} + \left(5 a^{5} + 6 a^{4} + 5 a^{3} + 4 a^{2} + 8 a + 2\right)\cdot 13^{3} + \left(11 a^{5} + 3 a^{4} + 6 a^{3} + 4 a^{2} + a + 2\right)\cdot 13^{4} + \left(6 a^{5} + 3 a^{4} + 12 a^{3} + 2 a^{2} + 6 a + 2\right)\cdot 13^{5} + \left(3 a^{5} + 5 a^{4} + 9 a^{3} + 3 a^{2} + 4 a + 10\right)\cdot 13^{6} + \left(7 a^{4} + 12 a^{3} + 3 a^{2} + a + 5\right)\cdot 13^{7} +O(13^{8})\)
|
$r_{ 2 }$ | $=$ |
\( 6 a^{5} + a^{4} + 11 a^{3} + 12 a^{2} + 2 a + 9 + \left(3 a^{5} + a^{4} + 7 a^{3} + 10 a^{2} + 9 a + 11\right)\cdot 13 + \left(7 a^{4} + 12 a^{3} + 9 a^{2} + 4 a + 6\right)\cdot 13^{2} + \left(12 a^{5} + 4 a^{4} + 8 a^{3} + 2 a^{2} + 8\right)\cdot 13^{3} + \left(6 a^{5} + 6 a^{4} + 12 a^{2} + 11\right)\cdot 13^{4} + \left(9 a^{5} + 10 a^{4} + 12 a^{3} + a^{2} + 9 a + 7\right)\cdot 13^{5} + \left(2 a^{4} + 10 a^{3} + 12 a^{2} + a + 12\right)\cdot 13^{6} + \left(2 a^{5} + 5 a^{4} + 12 a^{3} + 6 a^{2} + 8 a + 12\right)\cdot 13^{7} +O(13^{8})\)
|
$r_{ 3 }$ | $=$ |
\( 5 a^{5} + 2 a^{4} + 2 a^{3} + 8 a^{2} + 12 a + 12 + \left(a^{5} + 4 a^{4} + 3 a^{3} + 2 a^{2} + 9 a + 6\right)\cdot 13 + \left(8 a^{5} + 2 a^{4} + 7 a^{2} + 7 a + 1\right)\cdot 13^{2} + \left(11 a^{5} + 6 a^{4} + a^{3} + 10 a + 3\right)\cdot 13^{3} + \left(a^{5} + 12 a^{4} + 10 a^{3} + 12 a^{2} + 6 a + 3\right)\cdot 13^{4} + \left(2 a^{5} + 10 a^{4} + 6 a^{3} + 12 a^{2} + 10 a + 8\right)\cdot 13^{5} + \left(12 a^{5} + 11 a^{4} + a^{3} + 10 a^{2} + 12 a + 6\right)\cdot 13^{6} + \left(2 a^{5} + 11 a^{4} + 10 a^{3} + 3 a^{2} + a + 4\right)\cdot 13^{7} +O(13^{8})\)
|
$r_{ 4 }$ | $=$ |
\( 3 a^{5} + 12 a^{4} + 6 a^{3} + a^{2} + 12 a + 9 + \left(11 a^{5} + 12 a^{4} + 4 a^{3} + 8 a^{2} + 8 a + 7\right)\cdot 13 + \left(5 a^{5} + 8 a^{4} + 2 a^{3} + 11 a^{2} + 9 a + 3\right)\cdot 13^{2} + \left(10 a^{5} + 10 a^{4} + 9 a^{3} + 4 a^{2} + 4 a + 1\right)\cdot 13^{3} + \left(11 a^{5} + a^{3} + 6 a^{2} + 9 a + 10\right)\cdot 13^{4} + \left(6 a^{5} + 6 a^{4} + 8 a^{3} + 3 a^{2} + a + 9\right)\cdot 13^{5} + \left(9 a^{5} + 9 a^{4} + 9 a^{3} + 8 a^{2} + 6 a + 7\right)\cdot 13^{6} + \left(10 a^{5} + 11 a^{4} + 2 a^{3} + 5 a^{2} + 7 a + 9\right)\cdot 13^{7} +O(13^{8})\)
|
$r_{ 5 }$ | $=$ |
\( 4 a^{5} + a^{4} + 4 a^{3} + 6 a^{2} + 4 a + 12 + \left(10 a^{5} + 6 a^{4} + 3 a^{3} + 2 a^{2} + 2 a + 3\right)\cdot 13 + \left(8 a^{5} + 2 a^{4} + 4 a^{3} + 10 a^{2} + 11 a + 7\right)\cdot 13^{2} + \left(11 a^{5} + 6 a^{4} + 2 a^{3} + 5 a^{2} + 9 a + 1\right)\cdot 13^{3} + \left(2 a^{5} + 8 a^{4} + 10 a^{3} + 11 a + 3\right)\cdot 13^{4} + \left(a^{5} + 11 a^{4} + 9 a^{3} + 8 a^{2} + 7 a + 11\right)\cdot 13^{5} + \left(12 a^{5} + 12 a^{4} + 11 a^{3} + 6 a^{2} + 3 a + 12\right)\cdot 13^{6} + \left(6 a^{5} + 10 a^{4} + 10 a^{3} + 12 a^{2} + 7\right)\cdot 13^{7} +O(13^{8})\)
|
$r_{ 6 }$ | $=$ |
\( 5 a^{5} + 3 a^{4} + 7 a^{3} + 10 a^{2} + 6 a + 1 + \left(11 a^{5} + a^{4} + a^{3} + 8 a^{2} + 10 a + 4\right)\cdot 13 + \left(9 a^{5} + 8 a^{3} + 9 a + 8\right)\cdot 13^{2} + \left(9 a^{5} + 3 a^{4} + 12 a^{3} + 4 a^{2} + 8 a + 5\right)\cdot 13^{3} + \left(6 a^{5} + 11 a^{4} + 11 a^{3} + 9 a^{2} + 11 a\right)\cdot 13^{4} + \left(7 a^{5} + 6 a^{4} + a^{3} + 7 a^{2} + 9 a + 1\right)\cdot 13^{5} + \left(3 a^{5} + 11 a^{4} + 8 a^{3} + 8 a^{2} + 10 a + 2\right)\cdot 13^{6} + \left(9 a^{5} + 12 a^{4} + 10 a^{3} + 3 a^{2} + 10 a + 5\right)\cdot 13^{7} +O(13^{8})\)
|
$r_{ 7 }$ | $=$ |
\( 2 a^{5} + 6 a^{4} + 6 a^{3} + 11 a^{2} + 10 a + 10 + \left(7 a^{5} + 8 a^{4} + 5 a^{3} + 4 a^{2} + 5 a + 9\right)\cdot 13 + \left(4 a^{5} + 12 a^{4} + 8 a^{3} + 7 a^{2} + 9 a + 9\right)\cdot 13^{2} + \left(8 a^{5} + 8 a^{4} + 3 a^{3} + 12 a^{2} + 11 a + 6\right)\cdot 13^{3} + \left(8 a^{5} + a^{4} + 7 a^{3} + 8 a^{2} + 5 a + 4\right)\cdot 13^{4} + \left(7 a^{5} + a^{4} + 9 a^{3} + 8 a + 9\right)\cdot 13^{5} + \left(8 a^{5} + 7 a^{4} + 8 a^{3} + 2 a^{2} + 9 a + 9\right)\cdot 13^{6} + \left(9 a^{5} + 11 a^{3} + 2 a^{2} + 6 a + 5\right)\cdot 13^{7} +O(13^{8})\)
|
$r_{ 8 }$ | $=$ |
\( 9 a^{5} + 10 a^{4} + 5 a^{3} + 3 a^{2} + 10 a + 1 + \left(a^{5} + a^{4} + a^{3} + 9 a^{2} + 2 a + 5\right)\cdot 13 + \left(3 a^{5} + 7 a^{4} + a^{3} + 12 a^{2} + 4 a + 6\right)\cdot 13^{2} + \left(8 a^{5} + 4 a^{4} + 4 a^{3} + 4 a^{2} + 9 a + 1\right)\cdot 13^{3} + \left(8 a^{5} + 10 a^{4} + 7 a^{3} + a^{2} + 3 a + 3\right)\cdot 13^{4} + \left(12 a^{5} + 6 a^{3} + 11 a + 5\right)\cdot 13^{5} + \left(6 a^{5} + 8 a^{4} + 9 a + 6\right)\cdot 13^{6} + \left(10 a^{5} + 11 a^{4} + 3 a^{3} + 7 a^{2} + 8 a + 8\right)\cdot 13^{7} +O(13^{8})\)
|
$r_{ 9 }$ | $=$ |
\( 12 a^{5} + 3 a^{4} + 12 a^{3} + 5 a^{2} + 12 a + 10 + \left(9 a^{5} + 3 a^{4} + a^{3} + 8 a^{2} + 11 a\right)\cdot 13 + \left(7 a^{5} + 2 a^{4} + 8 a^{3} + 2 a^{2} + 4 a + 7\right)\cdot 13^{2} + \left(8 a^{5} + 5 a^{3} + 3 a^{2} + 7 a + 8\right)\cdot 13^{3} + \left(11 a^{5} + a^{4} + 9 a^{3} + 8 a^{2} + 12 a + 7\right)\cdot 13^{4} + \left(4 a^{5} + 11 a^{4} + 3 a^{3} + 2 a^{2} + 11 a + 12\right)\cdot 13^{5} + \left(10 a^{5} + 7 a^{4} + 4 a^{3} + 3 a^{2} + 4 a + 2\right)\cdot 13^{6} + \left(5 a^{5} + 7 a^{4} + 2 a^{3} + 10 a^{2} + 11 a + 12\right)\cdot 13^{7} +O(13^{8})\)
|
$r_{ 10 }$ | $=$ |
\( 2 a^{5} + 9 a^{4} + 8 a^{3} + 4 a^{2} + 5 a + 3 + \left(11 a^{5} + 10 a^{4} + 3 a^{3} + 6 a^{2} + 6 a + 10\right)\cdot 13 + \left(2 a^{5} + 5 a^{4} + 5 a^{3} + 2 a^{2} + 11 a + 10\right)\cdot 13^{2} + \left(4 a^{5} + 5 a^{4} + 4 a^{3} + 6 a^{2} + 3 a + 11\right)\cdot 13^{3} + \left(12 a^{5} + 8 a^{4} + 4 a^{2} + a\right)\cdot 13^{4} + \left(8 a^{5} + 8 a^{4} + 12 a^{3} + 3 a^{2} + 7 a + 4\right)\cdot 13^{5} + \left(8 a^{5} + 11 a^{4} + 6 a^{3} + 5 a^{2} + 11\right)\cdot 13^{6} + \left(a^{5} + 7 a^{4} + 2 a^{3} + 2 a^{2} + 7 a + 7\right)\cdot 13^{7} +O(13^{8})\)
|
$r_{ 11 }$ | $=$ |
\( 6 a^{5} + 5 a^{4} + 5 a^{3} + 7 a^{2} + 4 a + 4 + \left(4 a^{5} + 4 a^{3} + 5 a^{2} + 10 a + 9\right)\cdot 13 + \left(11 a^{4} + 4 a^{3} + 11 a^{2} + 8 a + 1\right)\cdot 13^{2} + \left(6 a^{5} + 10 a^{4} + 8 a^{3} + 12 a^{2} + 3 a + 3\right)\cdot 13^{3} + \left(2 a^{5} + 11 a^{4} + 8 a^{3} + 4 a^{2} + 5\right)\cdot 13^{4} + \left(3 a^{5} + 9 a^{3} + 12 a^{2} + 7 a + 8\right)\cdot 13^{5} + \left(5 a^{5} + 7 a^{4} + 2 a^{3} + 12 a^{2} + 3 a + 9\right)\cdot 13^{6} + \left(4 a^{3} + 6 a^{2} + 4 a + 2\right)\cdot 13^{7} +O(13^{8})\)
|
$r_{ 12 }$ | $=$ |
\( a^{5} + 4 a^{4} + 2 a^{3} + 9 a^{2} + 4 a + 3 + \left(11 a^{4} + 7 a^{3} + 8 a^{2} + a\right)\cdot 13 + \left(4 a^{5} + 9 a^{4} + 9 a^{3} + a^{2} + 12 a + 3\right)\cdot 13^{2} + \left(7 a^{5} + 10 a^{4} + 12 a^{3} + 3 a^{2} + 11 a + 10\right)\cdot 13^{3} + \left(5 a^{5} + a^{4} + 3 a^{3} + 5 a^{2} + 12 a + 12\right)\cdot 13^{4} + \left(6 a^{5} + 6 a^{4} + 11 a^{3} + 9 a^{2} + 12 a + 10\right)\cdot 13^{5} + \left(9 a^{5} + 8 a^{4} + 2 a^{3} + 4 a^{2} + 9 a + 11\right)\cdot 13^{6} + \left(4 a^{5} + 2 a^{4} + 7 a^{3} + 9 a + 7\right)\cdot 13^{7} +O(13^{8})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 12 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 12 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | |
$1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)(9,12)(10,11)$ | $-2$ | |
$3$ | $2$ | $(1,10)(2,9)(3,4)(5,6)(7,12)(8,11)$ | $0$ | ✓ |
$3$ | $2$ | $(1,11)(2,12)(3,5)(4,6)(7,9)(8,10)$ | $0$ | |
$1$ | $3$ | $(1,9,5)(2,6,10)(3,11,7)(4,8,12)$ | $2 \zeta_{3}$ | |
$1$ | $3$ | $(1,5,9)(2,10,6)(3,7,11)(4,12,8)$ | $-2 \zeta_{3} - 2$ | |
$2$ | $3$ | $(1,9,5)(2,10,6)(3,7,11)(4,8,12)$ | $-1$ | |
$2$ | $3$ | $(2,6,10)(3,11,7)$ | $\zeta_{3} + 1$ | |
$2$ | $3$ | $(2,10,6)(3,7,11)$ | $-\zeta_{3}$ | |
$1$ | $6$ | $(1,4,9,8,5,12)(2,11,6,7,10,3)$ | $2 \zeta_{3} + 2$ | |
$1$ | $6$ | $(1,12,5,8,9,4)(2,3,10,7,6,11)$ | $-2 \zeta_{3}$ | |
$2$ | $6$ | $(1,12,5,8,9,4)(2,11,6,7,10,3)$ | $1$ | |
$2$ | $6$ | $(1,8)(2,3,10,7,6,11)(4,5)(9,12)$ | $-\zeta_{3} - 1$ | |
$2$ | $6$ | $(1,8)(2,11,6,7,10,3)(4,5)(9,12)$ | $\zeta_{3}$ | |
$3$ | $6$ | $(1,6,9,10,5,2)(3,12,11,4,7,8)$ | $0$ | |
$3$ | $6$ | $(1,2,5,10,9,6)(3,8,7,4,11,12)$ | $0$ | |
$3$ | $6$ | $(1,3,9,11,5,7)(2,8,6,12,10,4)$ | $0$ | |
$3$ | $6$ | $(1,7,5,11,9,3)(2,4,10,12,6,8)$ | $0$ |