Properties

Label 2.401.5t2.2c1
Dimension 2
Group $D_5$
Conductor $ 401 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_5$
Conductor:$401 $
Artin number field: Splitting field of $f= x^{10} - 2 x^{9} - 20 x^{8} + 2 x^{7} + 69 x^{6} - x^{5} - 69 x^{4} + 2 x^{3} + 20 x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{5}$
Parity: Even
Determinant: 1.401.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{5} + 10 x^{2} + 9 $
Roots:
$r_{ 1 }$ $=$ $ 9 a^{4} + 8 a^{3} + 5 a + 2 + \left(5 a^{4} + 6 a^{3} + 2 a^{2} + 3 a + 5\right)\cdot 11 + \left(7 a^{4} + 5 a^{3} + 5 a^{2} + 5 a + 9\right)\cdot 11^{2} + \left(6 a^{4} + 9 a^{3} + 6 a^{2} + 8 a + 10\right)\cdot 11^{3} + \left(a^{4} + 5 a^{3} + 9 a + 10\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 a^{4} + 5 a^{3} + 7 a^{2} + 3 a + 6 + \left(2 a^{4} + 7 a^{3} + 2 a^{2} + a + 9\right)\cdot 11 + \left(10 a^{4} + 6 a^{3} + 3 a^{2} + 2 a + 4\right)\cdot 11^{2} + \left(5 a^{4} + 9 a^{3} + 10 a^{2} + 10 a\right)\cdot 11^{3} + \left(10 a^{4} + 7 a^{3} + 2 a^{2} + 10 a + 1\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 8 a^{4} + 4 a^{3} + 7 a^{2} + 2 a + \left(7 a^{4} + 9 a^{3} + 10 a^{2} + 10\right)\cdot 11 + \left(a^{4} + 8 a^{3} + a^{2} + 5 a + 6\right)\cdot 11^{2} + \left(2 a^{4} + 4 a^{2} + 6 a + 2\right)\cdot 11^{3} + \left(3 a^{4} + 8 a^{3} + 8 a^{2} + 4 a + 2\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 a^{4} + 4 a^{3} + a^{2} + 7 a + \left(4 a^{4} + 2 a^{3} + 4 a + 1\right)\cdot 11 + \left(a^{3} + 3 a^{2} + 9 a + 5\right)\cdot 11^{2} + \left(4 a^{3} + 4 a^{2} + 9 a\right)\cdot 11^{3} + \left(9 a^{4} + 3 a^{3} + 8 a^{2} + a + 7\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 8 a^{4} + 6 a^{3} + 3 a^{2} + 5 a + 1 + \left(8 a^{4} + 7 a^{3} + 10 a^{2} + a + 10\right)\cdot 11 + \left(8 a^{4} + 4 a^{3} + 8 a^{2} + 9 a + 3\right)\cdot 11^{2} + \left(5 a^{4} + 5 a^{3} + 4 a^{2} + 5 a + 8\right)\cdot 11^{3} + \left(10 a^{4} + 3 a\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 6 }$ $=$ $ a^{4} + 10 a^{3} + 3 a + 3 + \left(7 a^{4} + 5 a^{3} + 8 a^{2} + a\right)\cdot 11 + \left(3 a^{4} + 8 a^{3} + 9 a^{2} + 9 a + 5\right)\cdot 11^{2} + \left(8 a^{4} + 3 a^{3} + 4 a^{2} + 9 a + 9\right)\cdot 11^{3} + \left(9 a^{4} + 6 a^{3} + 4 a^{2} + 8 a + 2\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 7 }$ $=$ $ a^{4} + 2 a^{3} + a^{2} + 9 a + 10 + \left(3 a^{4} + a^{3} + 5 a^{2} + 3 a + 4\right)\cdot 11 + \left(6 a^{4} + 9 a^{3} + 3 a^{2} + 5 a + 8\right)\cdot 11^{2} + \left(7 a^{3} + 4 a^{2} + 4 a\right)\cdot 11^{3} + \left(3 a^{4} + 2 a^{3} + 4 a^{2} + 3\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 8 a^{4} + 7 a^{3} + 3 a^{2} + 5 a + 7 + \left(7 a^{4} + 8 a^{3} + a^{2} + a + 5\right)\cdot 11 + \left(8 a^{4} + 8 a^{3} + 2 a^{2} + 4 a + 6\right)\cdot 11^{2} + \left(4 a^{4} + 3 a^{3} + 2 a^{2} + 9 a + 9\right)\cdot 11^{3} + \left(9 a^{4} + 9 a^{3} + 7 a + 9\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 6 a^{4} + a^{3} + 6 a^{2} + 4 a + 4 + \left(4 a^{4} + 5 a^{3} + 7 a^{2} + 9 a + 6\right)\cdot 11 + \left(a^{4} + 2 a^{2} + 9 a\right)\cdot 11^{2} + \left(4 a^{4} + 5 a^{3} + 5 a^{2} + 7 a + 6\right)\cdot 11^{3} + \left(8 a^{4} + 8 a^{3} + 4 a^{2} + 3 a + 4\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 10 }$ $=$ $ 2 a^{4} + 8 a^{3} + 5 a^{2} + a + 2 + \left(3 a^{4} + 7 a^{2} + 6 a + 2\right)\cdot 11 + \left(6 a^{4} + a^{3} + 3 a^{2} + 6 a + 4\right)\cdot 11^{2} + \left(5 a^{4} + 5 a^{3} + 8 a^{2} + 4 a + 6\right)\cdot 11^{3} + \left(2 a^{3} + 9 a^{2} + 3 a + 1\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 10 }$

Cycle notation
$(1,2)(3,5)(4,7)(6,9)(8,10)$
$(1,3,4,6,8)(2,10,9,7,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 10 }$ Character value
$1$$1$$()$$2$
$5$$2$$(1,2)(3,5)(4,7)(6,9)(8,10)$$0$
$2$$5$$(1,3,4,6,8)(2,10,9,7,5)$$\zeta_{5}^{3} + \zeta_{5}^{2}$
$2$$5$$(1,4,8,3,6)(2,9,5,10,7)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - 1$
The blue line marks the conjugacy class containing complex conjugation.