Properties

Label 2.3e7.9t3.1
Dimension 2
Group $D_{9}$
Conductor $ 3^{7}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$2187= 3^{7} $
Artin number field: Splitting field of $f= x^{9} - 9 x^{6} + 27 x^{3} - 3 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{3} + 7 x + 59 $
Roots:
$r_{ 1 }$ $=$ $ 16 a^{2} + 15 a + 34 + \left(49 a^{2} + 12 a + 26\right)\cdot 61 + \left(39 a^{2} + 19 a + 43\right)\cdot 61^{2} + \left(10 a^{2} + 39 a + 49\right)\cdot 61^{3} + \left(58 a^{2} + 57 a + 47\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 a^{2} + 37 a + 31 + \left(15 a^{2} + 42 a + 50\right)\cdot 61 + \left(44 a^{2} + 39 a + 43\right)\cdot 61^{2} + \left(55 a^{2} + 45 a + 56\right)\cdot 61^{3} + \left(39 a^{2} + 31 a + 43\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 22 a^{2} + 13 a + 1 + \left(37 a^{2} + 42 a + 32\right)\cdot 61 + \left(54 a^{2} + 39 a + 51\right)\cdot 61^{2} + \left(49 a^{2} + 44 a + 49\right)\cdot 61^{3} + \left(55 a^{2} + 43 a + 36\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 20 a^{2} + 34 a + 12 + \left(37 a^{2} + 33 a + 52\right)\cdot 61 + \left(49 a^{2} + 15 a + 7\right)\cdot 61^{2} + \left(42 a^{2} + 50 a + 37\right)\cdot 61^{3} + \left(9 a^{2} + 17 a + 4\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 29 a^{2} + 31 a + 54 + \left(39 a^{2} + 51 a + 41\right)\cdot 61 + \left(31 a^{2} + 54 a + 25\right)\cdot 61^{2} + \left(47 a^{2} + 36 a + 18\right)\cdot 61^{3} + \left(49 a^{2} + 49\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 58 a^{2} + a + 47 + \left(41 a^{2} + 34 a + 12\right)\cdot 61 + \left(43 a^{2} + 57 a + 41\right)\cdot 61^{2} + \left(23 a^{2} + 35 a + 49\right)\cdot 61^{3} + \left(24 a^{2} + 15 a + 52\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 25 a^{2} + 12 a + 15 + \left(35 a^{2} + 15 a + 43\right)\cdot 61 + \left(32 a^{2} + 26 a + 9\right)\cdot 61^{2} + \left(7 a^{2} + 32 a + 35\right)\cdot 61^{3} + \left(54 a^{2} + 46 a + 8\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 21 a^{2} + 54 a + 37 + \left(6 a^{2} + 27 a + 29\right)\cdot 61 + \left(46 a^{2} + 27 a + 52\right)\cdot 61^{2} + \left(18 a^{2} + 39 a + 46\right)\cdot 61^{3} + \left(32 a^{2} + 28 a + 28\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 42 a^{2} + 47 a + 13 + \left(42 a^{2} + 45 a + 16\right)\cdot 61 + \left(23 a^{2} + 24 a + 29\right)\cdot 61^{2} + \left(48 a^{2} + 41 a + 22\right)\cdot 61^{3} + \left(41 a^{2} + a + 32\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,8,9,7,5,6,4,2,3)$
$(1,6)(3,4)(5,8)(7,9)$
$(1,7,4)(2,8,5)(3,9,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$ $c3$
$1$ $1$ $()$ $2$ $2$ $2$
$9$ $2$ $(1,6)(3,4)(5,8)(7,9)$ $0$ $0$ $0$
$2$ $3$ $(1,7,4)(2,8,5)(3,9,6)$ $-1$ $-1$ $-1$
$2$ $9$ $(1,8,9,7,5,6,4,2,3)$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ $\zeta_{9}^{5} + \zeta_{9}^{4}$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$ $9$ $(1,9,5,4,3,8,7,6,2)$ $\zeta_{9}^{5} + \zeta_{9}^{4}$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$ $9$ $(1,5,3,7,2,9,4,8,6)$ $-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$ $-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$ $\zeta_{9}^{5} + \zeta_{9}^{4}$
The blue line marks the conjugacy class containing complex conjugation.