Properties

Label 2.3e5_7e2.24t22.2c2
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 3^{5} \cdot 7^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$11907= 3^{5} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 3 x^{6} + 2 x^{5} + 4 x^{4} + 3 x^{3} - 5 x^{2} - 7 x - 3 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 6 + \left(8 a + 8\right)\cdot 17 + \left(5 a + 2\right)\cdot 17^{2} + \left(15 a + 12\right)\cdot 17^{3} + \left(4 a + 2\right)\cdot 17^{4} + \left(11 a + 14\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 3 + 13\cdot 17 + 2\cdot 17^{2} + 15\cdot 17^{3} + 7\cdot 17^{4} + 6\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 11 + \left(a + 11\right)\cdot 17 + \left(5 a + 1\right)\cdot 17^{2} + \left(11 a + 15\right)\cdot 17^{3} + \left(12 a + 5\right)\cdot 17^{4} + \left(14 a + 3\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 8 + \left(8 a + 10\right)\cdot 17 + \left(9 a + 12\right)\cdot 17^{2} + \left(5 a + 7\right)\cdot 17^{3} + \left(14 a + 13\right)\cdot 17^{4} + 4 a\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 13 + \left(8 a + 9\right)\cdot 17 + \left(11 a + 16\right)\cdot 17^{2} + \left(a + 4\right)\cdot 17^{3} + \left(12 a + 9\right)\cdot 17^{4} + \left(5 a + 3\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 2 + 6\cdot 17 + 13\cdot 17^{2} + 4\cdot 17^{3} + 16\cdot 17^{4} + 8\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 5 a + 6 + \left(15 a + 1\right)\cdot 17 + \left(11 a + 5\right)\cdot 17^{2} + \left(5 a + 4\right)\cdot 17^{3} + \left(4 a + 7\right)\cdot 17^{4} + \left(2 a + 5\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 5 a + 3 + \left(8 a + 7\right)\cdot 17 + \left(7 a + 13\right)\cdot 17^{2} + \left(11 a + 3\right)\cdot 17^{3} + \left(2 a + 5\right)\cdot 17^{4} + \left(12 a + 8\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(2,8)(6,7)$
$(1,8,6)(2,5,7)$
$(1,5)(2,6)(3,4)(7,8)$
$(1,7,5,8)(2,3,6,4)$
$(1,3,5,4)(2,8,6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,4)(7,8)$$-2$
$12$$2$$(1,5)(2,8)(6,7)$$0$
$8$$3$$(2,8,4)(3,6,7)$$-1$
$6$$4$$(1,7,5,8)(2,3,6,4)$$0$
$8$$6$$(1,5)(2,3,8,6,4,7)$$1$
$6$$8$$(1,6,4,8,5,2,3,7)$$\zeta_{8}^{3} + \zeta_{8}$
$6$$8$$(1,2,4,7,5,6,3,8)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.