Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 3 a + 9 + \left(6 a + 18\right)\cdot 23 + \left(7 a + 18\right)\cdot 23^{2} + \left(6 a + 8\right)\cdot 23^{3} + \left(20 a + 17\right)\cdot 23^{4} + \left(13 a + 7\right)\cdot 23^{5} + \left(a + 5\right)\cdot 23^{6} + \left(15 a + 20\right)\cdot 23^{7} + \left(2 a + 4\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 11 a + 15 + \left(15 a + 14\right)\cdot 23 + \left(17 a + 10\right)\cdot 23^{2} + \left(12 a + 6\right)\cdot 23^{3} + \left(11 a + 12\right)\cdot 23^{4} + \left(21 a + 1\right)\cdot 23^{5} + \left(13 a + 10\right)\cdot 23^{6} + \left(6 a + 10\right)\cdot 23^{7} + 8 a\cdot 23^{8} +O\left(23^{ 9 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 12 a + 9 + \left(7 a + 8\right)\cdot 23 + \left(5 a + 12\right)\cdot 23^{2} + \left(10 a + 16\right)\cdot 23^{3} + \left(11 a + 10\right)\cdot 23^{4} + \left(a + 21\right)\cdot 23^{5} + \left(9 a + 12\right)\cdot 23^{6} + \left(16 a + 12\right)\cdot 23^{7} + \left(14 a + 22\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 8 + 12\cdot 23 + 10\cdot 23^{2} + 8\cdot 23^{3} + 6\cdot 23^{4} + 23^{5} + 17\cdot 23^{6} + 19\cdot 23^{7} + 5\cdot 23^{8} +O\left(23^{ 9 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 16 + 10\cdot 23 + 12\cdot 23^{2} + 14\cdot 23^{3} + 16\cdot 23^{4} + 21\cdot 23^{5} + 5\cdot 23^{6} + 3\cdot 23^{7} + 17\cdot 23^{8} +O\left(23^{ 9 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 20 a + 15 + \left(16 a + 4\right)\cdot 23 + \left(15 a + 4\right)\cdot 23^{2} + \left(16 a + 14\right)\cdot 23^{3} + \left(2 a + 5\right)\cdot 23^{4} + \left(9 a + 15\right)\cdot 23^{5} + \left(21 a + 17\right)\cdot 23^{6} + \left(7 a + 2\right)\cdot 23^{7} + \left(20 a + 18\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 11 a + 10 + \left(15 a + 11\right)\cdot 23 + \left(17 a + 15\right)\cdot 23^{2} + \left(12 a + 8\right)\cdot 23^{3} + 11 a\cdot 23^{4} + \left(21 a + 13\right)\cdot 23^{5} + \left(13 a + 6\right)\cdot 23^{6} + \left(6 a + 13\right)\cdot 23^{7} + \left(8 a + 12\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 12 a + 14 + \left(7 a + 11\right)\cdot 23 + \left(5 a + 7\right)\cdot 23^{2} + \left(10 a + 14\right)\cdot 23^{3} + \left(11 a + 22\right)\cdot 23^{4} + \left(a + 9\right)\cdot 23^{5} + \left(9 a + 16\right)\cdot 23^{6} + \left(16 a + 9\right)\cdot 23^{7} + \left(14 a + 10\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(2,3)(4,7)(5,8)$ |
| $(2,8,4)(3,7,5)$ |
| $(1,2,6,3)(4,8,5,7)$ |
| $(1,5,6,4)(2,8,3,7)$ |
| $(1,6)(2,3)(4,5)(7,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,6)(2,3)(4,5)(7,8)$ | $-2$ |
| $12$ | $2$ | $(2,3)(4,7)(5,8)$ | $0$ |
| $8$ | $3$ | $(1,8,3)(2,6,7)$ | $-1$ |
| $6$ | $4$ | $(1,2,6,3)(4,8,5,7)$ | $0$ |
| $8$ | $6$ | $(1,5,7,6,4,8)(2,3)$ | $1$ |
| $6$ | $8$ | $(1,5,3,8,6,4,2,7)$ | $\zeta_{8}^{3} + \zeta_{8}$ |
| $6$ | $8$ | $(1,4,3,7,6,5,2,8)$ | $-\zeta_{8}^{3} - \zeta_{8}$ |
The blue line marks the conjugacy class containing complex conjugation.