Properties

Label 2.3e4_7e2.6t5.8c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 3^{4} \cdot 7^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$3969= 3^{4} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{9} + 6 x^{7} - 8 x^{6} - 9 x^{5} - 60 x^{4} - 15 x^{3} - 18 x^{2} + 108 x + 8 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.7.6t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 4 a^{2} + 3 a + 7 + \left(5 a^{2} + 2 a + 3\right)\cdot 11 + \left(4 a^{2} + a + 4\right)\cdot 11^{2} + \left(5 a^{2} + a + 3\right)\cdot 11^{3} + \left(8 a^{2} + 2 a + 4\right)\cdot 11^{4} + \left(3 a^{2} + 5\right)\cdot 11^{5} + \left(9 a^{2} + 9 a\right)\cdot 11^{6} + \left(7 a^{2} + 3 a + 5\right)\cdot 11^{7} +O\left(11^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 5 a^{2} + 10 a + 6 + \left(10 a^{2} + 9 a + 2\right)\cdot 11 + 9 a^{2}11^{2} + \left(7 a^{2} + 8 a + 9\right)\cdot 11^{3} + \left(a^{2} + 2 a + 8\right)\cdot 11^{4} + \left(3 a^{2} + 6 a + 2\right)\cdot 11^{5} + \left(a + 9\right)\cdot 11^{6} + \left(a^{2} + a + 4\right)\cdot 11^{7} +O\left(11^{ 8 }\right)$
$r_{ 3 }$ $=$ $ a^{2} + 6 a + 3 + \left(9 a^{2} + 6 a + 1\right)\cdot 11 + \left(10 a + 3\right)\cdot 11^{2} + \left(8 a^{2} + 3 a + 3\right)\cdot 11^{3} + \left(a^{2} + 5 a + 6\right)\cdot 11^{4} + \left(5 a^{2} + 3 a + 3\right)\cdot 11^{5} + \left(8 a^{2} + 4 a + 10\right)\cdot 11^{6} + \left(6 a^{2} + 4 a + 10\right)\cdot 11^{7} +O\left(11^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 5 a^{2} + 3 a + 2 + \left(a + 8\right)\cdot 11 + \left(2 a^{2} + 8 a + 2\right)\cdot 11^{2} + \left(3 a + 9\right)\cdot 11^{3} + \left(3 a^{2} + 5 a\right)\cdot 11^{4} + \left(4 a^{2} + 7 a + 3\right)\cdot 11^{5} + \left(4 a^{2} + 2 a + 5\right)\cdot 11^{6} + \left(4 a^{2} + 8 a\right)\cdot 11^{7} +O\left(11^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 4 a^{2} + 10 a + 8 + \left(4 a^{2} + 10 a + 9\right)\cdot 11 + \left(a^{2} + 4 a + 1\right)\cdot 11^{2} + \left(2 a^{2} + 5 a + 8\right)\cdot 11^{3} + \left(7 a^{2} + 10 a + 2\right)\cdot 11^{4} + \left(2 a^{2} + 9 a + 8\right)\cdot 11^{5} + \left(5 a^{2} + 7 a + 2\right)\cdot 11^{6} + \left(4 a^{2} + 7 a + 4\right)\cdot 11^{7} +O\left(11^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 6 a^{2} + 6 a + \left(8 a^{2} + 4 a\right)\cdot 11 + \left(8 a^{2} + 6 a + 6\right)\cdot 11^{2} + \left(a + 10\right)\cdot 11^{3} + \left(2 a^{2} + 6 a + 1\right)\cdot 11^{4} + \left(3 a^{2} + 8 a + 10\right)\cdot 11^{5} + \left(8 a^{2} + 9 a + 8\right)\cdot 11^{6} + \left(10 a^{2} + 9 a + 6\right)\cdot 11^{7} +O\left(11^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 6 a^{2} + 2 a + 6 + \left(7 a^{2} + 2 a + 6\right)\cdot 11 + \left(5 a^{2} + 10 a + 9\right)\cdot 11^{2} + \left(8 a^{2} + 5 a + 3\right)\cdot 11^{3} + \left(3 a + 1\right)\cdot 11^{4} + \left(2 a^{2} + 7 a + 3\right)\cdot 11^{5} + \left(4 a^{2} + 8 a + 8\right)\cdot 11^{6} + \left(7 a^{2} + 2 a\right)\cdot 11^{7} +O\left(11^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 6 a + 3 + \left(3 a^{2} + 7 a + 7\right)\cdot 11 + \left(3 a^{2} + 3 a + 9\right)\cdot 11^{2} + \left(2 a^{2} + a + 8\right)\cdot 11^{3} + \left(7 a^{2} + 2 a + 8\right)\cdot 11^{4} + \left(4 a^{2} + 7 a + 4\right)\cdot 11^{5} + \left(2 a^{2} + 10 a + 8\right)\cdot 11^{6} + \left(10 a^{2} + 10 a + 9\right)\cdot 11^{7} +O\left(11^{ 8 }\right)$
$r_{ 9 }$ $=$ $ 2 a^{2} + 9 a + 9 + \left(6 a^{2} + 9 a + 4\right)\cdot 11 + \left(7 a^{2} + 8 a + 6\right)\cdot 11^{2} + \left(8 a^{2} + a + 9\right)\cdot 11^{3} + \left(6 a + 8\right)\cdot 11^{4} + \left(4 a^{2} + 4 a + 2\right)\cdot 11^{5} + \left(a^{2} + 1\right)\cdot 11^{6} + \left(2 a^{2} + 6 a + 1\right)\cdot 11^{7} +O\left(11^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,8,6,9,4,3)(2,7,5)$
$(2,9)(3,5)(7,8)$
$(1,9)(3,6)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,9)(3,6)(4,8)$$0$
$1$$3$$(1,6,4)(2,5,7)(3,8,9)$$2 \zeta_{3}$
$1$$3$$(1,4,6)(2,7,5)(3,9,8)$$-2 \zeta_{3} - 2$
$2$$3$$(1,7,3)(2,8,6)(4,5,9)$$\zeta_{3} + 1$
$2$$3$$(1,3,7)(2,6,8)(4,9,5)$$-\zeta_{3}$
$2$$3$$(1,2,9)(3,6,5)(4,7,8)$$-1$
$3$$6$$(1,8,6,9,4,3)(2,7,5)$$0$
$3$$6$$(1,3,4,9,6,8)(2,5,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.