Basic invariants
| Dimension: | $2$ |
| Group: | $S_3\times C_3$ |
| Conductor: | \(3969\)\(\medspace = 3^{4} \cdot 7^{2} \) |
| Artin stem field: | Galois closure of 9.3.1688134559643.4 |
| Galois orbit size: | $2$ |
| Smallest permutation container: | $S_3\times C_3$ |
| Parity: | odd |
| Determinant: | 1.9.6t1.a.b |
| Projective image: | $S_3$ |
| Projective stem field: | Galois closure of 3.1.1323.1 |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{9} - 3x^{7} - 6x^{6} + 45x^{5} - 51x^{4} - 3x^{3} + 36x^{2} - 12x - 8 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$:
\( x^{3} + 2x + 11 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 10 a^{2} + 2 a + 12 + \left(4 a^{2} + 12 a + 11\right)\cdot 13 + \left(6 a^{2} + 9\right)\cdot 13^{2} + \left(6 a^{2} + 8 a + 7\right)\cdot 13^{3} + \left(2 a^{2} + 5 a + 8\right)\cdot 13^{4} + \left(a^{2} + 3\right)\cdot 13^{5} + \left(7 a^{2} + 7 a + 12\right)\cdot 13^{6} + \left(2 a^{2} + 11 a + 7\right)\cdot 13^{7} + \left(5 a^{2} + 5 a + 12\right)\cdot 13^{8} +O(13^{9})\)
|
| $r_{ 2 }$ | $=$ |
\( 9 a^{2} + 4 a + 8 + \left(4 a^{2} + 12 a + 12\right)\cdot 13 + \left(10 a^{2} + 3 a + 1\right)\cdot 13^{2} + \left(12 a^{2} + a + 8\right)\cdot 13^{3} + \left(6 a^{2} + 2 a + 12\right)\cdot 13^{4} + \left(3 a^{2} + 7 a + 12\right)\cdot 13^{5} + \left(5 a^{2} + 8 a + 3\right)\cdot 13^{6} + \left(5 a + 10\right)\cdot 13^{7} + \left(2 a^{2} + 10 a + 1\right)\cdot 13^{8} +O(13^{9})\)
|
| $r_{ 3 }$ | $=$ |
\( 4 a^{2} + 3 a + 10 + \left(11 a^{2} + 12\right)\cdot 13 + \left(6 a^{2} + 5\right)\cdot 13^{2} + \left(6 a^{2} + 9 a + 8\right)\cdot 13^{3} + \left(11 a^{2} + 6 a + 5\right)\cdot 13^{4} + \left(5 a^{2} + a + 7\right)\cdot 13^{5} + \left(a^{2} + 12 a + 7\right)\cdot 13^{6} + \left(11 a^{2} + 2 a + 11\right)\cdot 13^{7} + \left(5 a^{2} + 12 a + 6\right)\cdot 13^{8} +O(13^{9})\)
|
| $r_{ 4 }$ | $=$ |
\( 9 a^{2} + 5 a + \left(6 a^{2} + 9 a + 10\right)\cdot 13 + \left(6 a + 6\right)\cdot 13^{2} + \left(a^{2} + 2 a + 2\right)\cdot 13^{3} + \left(3 a^{2} + 3 a + 4\right)\cdot 13^{4} + \left(a^{2} + 6 a + 4\right)\cdot 13^{5} + \left(10 a^{2} + 9 a + 9\right)\cdot 13^{6} + \left(9 a^{2} + 11\right)\cdot 13^{7} + \left(8 a^{2} + 4 a + 6\right)\cdot 13^{8} +O(13^{9})\)
|
| $r_{ 5 }$ | $=$ |
\( 8 a^{2} + 4 a + 5 + \left(a^{2} + 4 a + 3\right)\cdot 13 + \left(2 a^{2} + 2 a + 4\right)\cdot 13^{2} + \left(12 a^{2} + 9 a + 2\right)\cdot 13^{3} + \left(2 a^{2} + 7 a + 9\right)\cdot 13^{4} + \left(8 a^{2} + 12 a + 8\right)\cdot 13^{5} + \left(10 a^{2} + 7 a + 12\right)\cdot 13^{6} + \left(2 a^{2} + 6 a + 3\right)\cdot 13^{7} + \left(2 a^{2} + 11 a + 4\right)\cdot 13^{8} +O(13^{9})\)
|
| $r_{ 6 }$ | $=$ |
\( 8 a^{2} + 7 a + 5 + \left(6 a^{2} + 9 a + 1\right)\cdot 13 + \left(4 a^{2} + 9 a + 3\right)\cdot 13^{2} + \left(7 a^{2} + 8 a\right)\cdot 13^{3} + \left(7 a^{2} + 12 a + 11\right)\cdot 13^{4} + \left(3 a^{2} + 12 a + 6\right)\cdot 13^{5} + \left(8 a^{2} + 10 a + 9\right)\cdot 13^{6} + \left(7 a^{2} + 7 a + 1\right)\cdot 13^{7} + \left(5 a^{2} + 8 a\right)\cdot 13^{8} +O(13^{9})\)
|
| $r_{ 7 }$ | $=$ |
\( 6 a + 9 + \left(10 a^{2} + 6\right)\cdot 13 + \left(8 a^{2} + 9 a + 8\right)\cdot 13^{2} + \left(6 a^{2} + 2 a + 8\right)\cdot 13^{3} + \left(7 a^{2} + 4 a + 4\right)\cdot 13^{4} + \left(3 a^{2} + 4 a + 4\right)\cdot 13^{5} + \left(6 a^{2} + 5 a + 5\right)\cdot 13^{6} + \left(a^{2} + 4 a + 7\right)\cdot 13^{7} + \left(5 a^{2} + 3 a + 1\right)\cdot 13^{8} +O(13^{9})\)
|
| $r_{ 8 }$ | $=$ |
\( 12 a^{2} + 8 a + 4 + \left(9 a^{2} + 1\right)\cdot 13 + \left(12 a^{2} + 12 a + 10\right)\cdot 13^{2} + \left(12 a^{2} + 8 a + 9\right)\cdot 13^{3} + \left(11 a^{2} + 11\right)\cdot 13^{4} + \left(5 a^{2} + 11 a + 1\right)\cdot 13^{5} + \left(4 a^{2} + 6 a + 6\right)\cdot 13^{6} + \left(12 a^{2} + 11 a + 6\right)\cdot 13^{7} + \left(a^{2} + 7 a + 6\right)\cdot 13^{8} +O(13^{9})\)
|
| $r_{ 9 }$ | $=$ |
\( 5 a^{2} + 12 + \left(9 a^{2} + 3 a + 4\right)\cdot 13 + \left(12 a^{2} + 7 a + 1\right)\cdot 13^{2} + \left(11 a^{2} + a + 4\right)\cdot 13^{3} + \left(10 a^{2} + 9 a + 10\right)\cdot 13^{4} + \left(5 a^{2} + 8 a + 1\right)\cdot 13^{5} + \left(11 a^{2} + 9 a + 11\right)\cdot 13^{6} + \left(3 a^{2} + 3\right)\cdot 13^{7} + \left(2 a^{2} + a + 11\right)\cdot 13^{8} +O(13^{9})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 9 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 9 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $2$ | |
| $3$ | $2$ | $(1,7)(3,9)(6,8)$ | $0$ | ✓ |
| $1$ | $3$ | $(1,3,8)(2,4,5)(6,7,9)$ | $-2 \zeta_{3} - 2$ | |
| $1$ | $3$ | $(1,8,3)(2,5,4)(6,9,7)$ | $2 \zeta_{3}$ | |
| $2$ | $3$ | $(1,2,9)(3,4,6)(5,7,8)$ | $-\zeta_{3}$ | |
| $2$ | $3$ | $(1,9,2)(3,6,4)(5,8,7)$ | $\zeta_{3} + 1$ | |
| $2$ | $3$ | $(1,4,7)(2,6,8)(3,5,9)$ | $-1$ | |
| $3$ | $6$ | $(1,8,3)(2,9,4,6,5,7)$ | $0$ | |
| $3$ | $6$ | $(1,3,8)(2,7,5,6,4,9)$ | $0$ |