Properties

Label 2.3e4_79e2.24t7.3
Dimension 2
Group $\SL(2,3)$
Conductor $ 3^{4} \cdot 79^{2}$
Frobenius-Schur indicator -1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\SL(2,3)$
Conductor:$505521= 3^{4} \cdot 79^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + x^{6} + 4 x^{5} - 19 x^{4} + 226 x^{3} + 310 x^{2} - 214 x + 241 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 24T7
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 11 a^{2} + 6 a + 3 + \left(a^{2} + 11 a + 4\right)\cdot 13 + \left(10 a^{2} + 9 a + 2\right)\cdot 13^{2} + \left(10 a^{2} + 9 a + 5\right)\cdot 13^{3} + \left(2 a^{2} + 4 a + 9\right)\cdot 13^{4} + \left(7 a^{2} + 6 a + 10\right)\cdot 13^{5} + 3\cdot 13^{6} + \left(10 a + 4\right)\cdot 13^{7} + \left(5 a^{2} + 12 a + 9\right)\cdot 13^{8} + \left(12 a^{2} + 2 a + 12\right)\cdot 13^{9} + \left(12 a^{2} + 10 a + 10\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 7 a^{2} + 2 a + 10 + \left(5 a^{2} + 5 a + 6\right)\cdot 13 + \left(12 a^{2} + 2 a + 2\right)\cdot 13^{2} + \left(12 a^{2} + 12 a\right)\cdot 13^{3} + \left(5 a^{2} + 11 a + 10\right)\cdot 13^{4} + \left(12 a^{2} + 9 a + 5\right)\cdot 13^{5} + \left(5 a^{2} + 12 a + 2\right)\cdot 13^{6} + \left(2 a^{2} + a + 10\right)\cdot 13^{7} + \left(5 a + 5\right)\cdot 13^{8} + 12\cdot 13^{9} + \left(12 a^{2} + 9 a + 9\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 7 a^{2} + 5 a + 2 + \left(12 a^{2} + a + 1\right)\cdot 13 + \left(7 a^{2} + 5 a + 8\right)\cdot 13^{2} + \left(4 a^{2} + 5\right)\cdot 13^{3} + \left(6 a^{2} + 3 a + 5\right)\cdot 13^{4} + \left(5 a^{2} + a + 8\right)\cdot 13^{5} + \left(7 a^{2} + 11 a + 8\right)\cdot 13^{6} + \left(12 a^{2} + 4 a + 3\right)\cdot 13^{7} + \left(a^{2} + 12 a + 5\right)\cdot 13^{8} + \left(8 a + 9\right)\cdot 13^{9} + \left(5 a + 6\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 8 a^{2} + 2 a + 12 + \left(11 a^{2} + 12\right)\cdot 13 + \left(7 a^{2} + 11 a + 7\right)\cdot 13^{2} + \left(10 a^{2} + 2 a\right)\cdot 13^{3} + \left(3 a^{2} + 5 a + 2\right)\cdot 13^{4} + \left(5 a + 10\right)\cdot 13^{5} + \left(5 a^{2} + a + 9\right)\cdot 13^{6} + \left(11 a + 4\right)\cdot 13^{7} + \left(6 a^{2} + 6\right)\cdot 13^{8} + \left(a + 5\right)\cdot 13^{9} + \left(10 a + 2\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 11 + 13 + 9\cdot 13^{2} + 13^{3} + 12\cdot 13^{4} + 4\cdot 13^{5} + 3\cdot 13^{6} + 4\cdot 13^{8} + 9\cdot 13^{9} + 10\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 10 + 7\cdot 13 + 13^{2} + 12\cdot 13^{3} + 3\cdot 13^{4} + 11\cdot 13^{5} + 3\cdot 13^{6} + 5\cdot 13^{7} + 10\cdot 13^{8} + 3\cdot 13^{9} +O\left(13^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 6 a^{2} + 7 a + \left(9 a^{2} + 10 a + 12\right)\cdot 13 + \left(8 a^{2} + 4 a + 1\right)\cdot 13^{2} + \left(2 a^{2} + 5 a + 8\right)\cdot 13^{3} + \left(2 a^{2} + 10 a\right)\cdot 13^{4} + \left(6 a^{2} + 8 a + 6\right)\cdot 13^{5} + \left(3 a^{2} + 4 a + 3\right)\cdot 13^{6} + \left(6 a^{2} + 9 a + 2\right)\cdot 13^{7} + \left(6 a + 6\right)\cdot 13^{8} + \left(7 a^{2} + 12 a + 4\right)\cdot 13^{9} + \left(5 a^{2} + 8 a + 1\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 4 a + 5 + \left(11 a^{2} + 10 a + 5\right)\cdot 13 + \left(4 a^{2} + 5 a + 5\right)\cdot 13^{2} + \left(10 a^{2} + 8 a + 5\right)\cdot 13^{3} + \left(4 a^{2} + 3 a + 8\right)\cdot 13^{4} + \left(7 a^{2} + 7 a + 7\right)\cdot 13^{5} + \left(3 a^{2} + 8 a + 3\right)\cdot 13^{6} + \left(4 a^{2} + a + 8\right)\cdot 13^{7} + \left(12 a^{2} + a + 4\right)\cdot 13^{8} + \left(5 a^{2} + 7\right)\cdot 13^{9} + \left(8 a^{2} + 8 a + 9\right)\cdot 13^{10} +O\left(13^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,4)(2,7,8)$
$(1,5,8,6)(2,4,3,7)$
$(1,8)(2,3)(4,7)(5,6)$
$(1,2,8,3)(4,5,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,3)(4,7)(5,6)$ $-2$
$4$ $3$ $(1,5,2)(3,8,6)$ $-1$
$4$ $3$ $(1,2,5)(3,6,8)$ $-1$
$6$ $4$ $(1,5,8,6)(2,4,3,7)$ $0$
$4$ $6$ $(1,2,4,8,3,7)(5,6)$ $1$
$4$ $6$ $(1,7,3,8,4,2)(5,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.