Properties

Label 2.3e4_7.6t5.4c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 3^{4} \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$567= 3^{4} \cdot 7 $
Artin number field: Splitting field of $f= x^{9} - 12 x^{7} - 6 x^{6} + 27 x^{5} - 36 x^{4} - 87 x^{3} + 72 x^{2} + 36 x - 120 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.3e2_7.6t1.4c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 3 a + 3 + \left(3 a^{2} + 3 a + 1\right)\cdot 13 + \left(6 a^{2} + 12 a + 8\right)\cdot 13^{2} + \left(7 a^{2} + 8 a + 6\right)\cdot 13^{3} + \left(7 a^{2} + 12 a + 5\right)\cdot 13^{4} + \left(10 a + 1\right)\cdot 13^{5} + \left(7 a^{2} + 2 a + 1\right)\cdot 13^{6} + \left(5 a^{2} + 2 a + 8\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 11 a^{2} + 2 a + 9 + \left(5 a^{2} + 6 a\right)\cdot 13 + \left(8 a^{2} + 9 a + 11\right)\cdot 13^{2} + \left(8 a^{2} + 10 a + 3\right)\cdot 13^{3} + \left(7 a^{2} + 10 a + 1\right)\cdot 13^{4} + \left(3 a^{2} + 5 a + 1\right)\cdot 13^{5} + \left(11 a^{2} + 6 a + 11\right)\cdot 13^{6} + \left(8 a^{2} + 11 a + 3\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 3 a + \left(3 a^{2} + 3 a\right)\cdot 13 + \left(6 a^{2} + 12 a + 1\right)\cdot 13^{2} + \left(7 a^{2} + 8 a + 5\right)\cdot 13^{3} + \left(7 a^{2} + 12 a + 9\right)\cdot 13^{4} + \left(10 a + 1\right)\cdot 13^{5} + \left(7 a^{2} + 2 a + 7\right)\cdot 13^{6} + \left(5 a^{2} + 2 a + 12\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 2 a^{2} + 8 a + 7 + \left(4 a^{2} + 3 a + 1\right)\cdot 13 + \left(11 a^{2} + 4 a + 12\right)\cdot 13^{2} + \left(9 a^{2} + 6 a + 3\right)\cdot 13^{3} + \left(10 a^{2} + 2 a + 9\right)\cdot 13^{4} + \left(8 a^{2} + 9 a + 12\right)\cdot 13^{5} + \left(7 a^{2} + 3 a + 7\right)\cdot 13^{6} + \left(11 a^{2} + 12 a + 7\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 11 a^{2} + 2 a + 6 + \left(5 a^{2} + 6 a + 12\right)\cdot 13 + \left(8 a^{2} + 9 a + 3\right)\cdot 13^{2} + \left(8 a^{2} + 10 a + 2\right)\cdot 13^{3} + \left(7 a^{2} + 10 a + 5\right)\cdot 13^{4} + \left(3 a^{2} + 5 a + 1\right)\cdot 13^{5} + \left(11 a^{2} + 6 a + 4\right)\cdot 13^{6} + \left(8 a^{2} + 11 a + 8\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 2 a^{2} + 8 a + 10 + \left(4 a^{2} + 3 a + 2\right)\cdot 13 + \left(11 a^{2} + 4 a + 6\right)\cdot 13^{2} + \left(9 a^{2} + 6 a + 5\right)\cdot 13^{3} + \left(10 a^{2} + 2 a + 5\right)\cdot 13^{4} + \left(8 a^{2} + 9 a + 12\right)\cdot 13^{5} + \left(7 a^{2} + 3 a + 1\right)\cdot 13^{6} + \left(11 a^{2} + 12 a + 3\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 3 a + 10 + \left(3 a^{2} + 3 a + 10\right)\cdot 13 + \left(6 a^{2} + 12 a + 2\right)\cdot 13^{2} + \left(7 a^{2} + 8 a + 5\right)\cdot 13^{3} + \left(7 a^{2} + 12 a + 2\right)\cdot 13^{4} + \left(10 a + 12\right)\cdot 13^{5} + \left(7 a^{2} + 2 a + 6\right)\cdot 13^{6} + \left(5 a^{2} + 2 a + 1\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 2 a^{2} + 8 a + 4 + \left(4 a^{2} + 3 a + 12\right)\cdot 13 + \left(11 a^{2} + 4 a\right)\cdot 13^{2} + \left(9 a^{2} + 6 a + 4\right)\cdot 13^{3} + \left(10 a^{2} + 2 a + 2\right)\cdot 13^{4} + \left(8 a^{2} + 9 a + 10\right)\cdot 13^{5} + \left(7 a^{2} + 3 a + 7\right)\cdot 13^{6} + \left(11 a^{2} + 12 a + 9\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 9 }$ $=$ $ 11 a^{2} + 2 a + 3 + \left(5 a^{2} + 6 a + 10\right)\cdot 13 + \left(8 a^{2} + 9 a + 5\right)\cdot 13^{2} + \left(8 a^{2} + 10 a + 2\right)\cdot 13^{3} + \left(7 a^{2} + 10 a + 11\right)\cdot 13^{4} + \left(3 a^{2} + 5 a + 11\right)\cdot 13^{5} + \left(11 a^{2} + 6 a + 3\right)\cdot 13^{6} + \left(8 a^{2} + 11 a + 10\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(2,7)(3,6)(5,8)$
$(1,5)(4,7)(6,9)$
$(1,2,6)(3,5,4)(7,9,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,5)(4,7)(6,9)$$0$
$1$$3$$(1,9,4)(2,8,3)(5,6,7)$$2 \zeta_{3}$
$1$$3$$(1,4,9)(2,3,8)(5,7,6)$$-2 \zeta_{3} - 2$
$2$$3$$(1,2,6)(3,5,4)(7,9,8)$$\zeta_{3} + 1$
$2$$3$$(1,6,2)(3,4,5)(7,8,9)$$-\zeta_{3}$
$2$$3$$(1,8,5)(2,7,4)(3,6,9)$$-1$
$3$$6$$(1,4,9)(2,6,8,7,3,5)$$0$
$3$$6$$(1,9,4)(2,5,3,7,8,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.