Properties

Label 2.3e4_7.6t5.1c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 3^{4} \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$567= 3^{4} \cdot 7 $
Artin number field: Splitting field of $f= x^{6} + 6 x^{4} - 3 x^{3} + 9 x^{2} - 9 x + 4 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.3e2_7.6t1.3c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 7 + \left(8 a + 4\right)\cdot 17 + \left(2 a + 10\right)\cdot 17^{2} + \left(9 a + 5\right)\cdot 17^{3} + \left(13 a + 2\right)\cdot 17^{4} + \left(8 a + 12\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 11 + \left(15 a + 9\right)\cdot 17 + \left(12 a + 9\right)\cdot 17^{2} + \left(7 a + 5\right)\cdot 17^{3} + \left(11 a + 15\right)\cdot 17^{4} + \left(15 a + 9\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 3 a + 9 + \left(7 a + 11\right)\cdot 17 + \left(10 a + 16\right)\cdot 17^{2} + \left(15 a + 10\right)\cdot 17^{3} + \left(14 a + 12\right)\cdot 17^{4} + \left(6 a + 7\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 13 a + 11 + \left(8 a + 8\right)\cdot 17 + \left(14 a + 4\right)\cdot 17^{2} + \left(7 a + 12\right)\cdot 17^{3} + \left(3 a + 6\right)\cdot 17^{4} + \left(8 a + 7\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 14 a + 12 + \left(9 a + 15\right)\cdot 17 + \left(6 a + 2\right)\cdot 17^{2} + \left(a + 16\right)\cdot 17^{3} + \left(2 a + 11\right)\cdot 17^{4} + \left(10 a + 16\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 1 + \left(a + 1\right)\cdot 17 + \left(4 a + 7\right)\cdot 17^{2} + 9 a\cdot 17^{3} + \left(5 a + 2\right)\cdot 17^{4} + \left(a + 14\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5,4)$
$(1,2,6,5,3,4)$
$(1,6,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,5)(2,3)(4,6)$$0$
$1$$3$$(1,6,3)(2,5,4)$$-2 \zeta_{3} - 2$
$1$$3$$(1,3,6)(2,4,5)$$2 \zeta_{3}$
$2$$3$$(1,6,3)$$-\zeta_{3}$
$2$$3$$(1,3,6)$$\zeta_{3} + 1$
$2$$3$$(1,3,6)(2,5,4)$$-1$
$3$$6$$(1,2,6,5,3,4)$$0$
$3$$6$$(1,4,3,5,6,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.