Properties

Label 2.3e4_59.6t5.2c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 3^{4} \cdot 59 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$4779= 3^{4} \cdot 59 $
Artin number field: Splitting field of $f= x^{6} + 12 x^{4} - 9 x^{3} + 36 x^{2} - 54 x + 35 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.3e2_59.6t1.2c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 31 a + 36 + 4 a\cdot 37 + \left(9 a + 9\right)\cdot 37^{2} + \left(14 a + 25\right)\cdot 37^{3} + \left(26 a + 32\right)\cdot 37^{4} + \left(28 a + 11\right)\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 28 a + 24 + \left(15 a + 20\right)\cdot 37 + \left(28 a + 5\right)\cdot 37^{2} + \left(7 a + 32\right)\cdot 37^{3} + \left(29 a + 4\right)\cdot 37^{4} + \left(26 a + 11\right)\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 3 a + 1 + \left(26 a + 27\right)\cdot 37 + \left(17 a + 27\right)\cdot 37^{2} + \left(6 a + 5\right)\cdot 37^{3} + \left(34 a + 19\right)\cdot 37^{4} + \left(a + 36\right)\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 12 + \left(32 a + 26\right)\cdot 37 + \left(27 a + 3\right)\cdot 37^{2} + \left(22 a + 36\right)\cdot 37^{3} + \left(10 a + 12\right)\cdot 37^{4} + \left(8 a + 26\right)\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 25 + \left(21 a + 18\right)\cdot 37 + \left(8 a + 29\right)\cdot 37^{2} + \left(29 a + 34\right)\cdot 37^{3} + \left(7 a + 2\right)\cdot 37^{4} + \left(10 a + 15\right)\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 34 a + 13 + \left(10 a + 17\right)\cdot 37 + \left(19 a + 35\right)\cdot 37^{2} + \left(30 a + 13\right)\cdot 37^{3} + \left(2 a + 1\right)\cdot 37^{4} + \left(35 a + 10\right)\cdot 37^{5} +O\left(37^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4,3)$
$(1,3)(2,6)(4,5)$
$(1,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,3)(2,6)(4,5)$$0$
$1$$3$$(1,6,5)(2,4,3)$$2 \zeta_{3}$
$1$$3$$(1,5,6)(2,3,4)$$-2 \zeta_{3} - 2$
$2$$3$$(2,4,3)$$\zeta_{3} + 1$
$2$$3$$(2,3,4)$$-\zeta_{3}$
$2$$3$$(1,5,6)(2,4,3)$$-1$
$3$$6$$(1,3,6,2,5,4)$$0$
$3$$6$$(1,4,5,2,6,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.