Properties

Label 2.3e4_5.6t5.1
Dimension 2
Group $S_3\times C_3$
Conductor $ 3^{4} \cdot 5 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$405= 3^{4} \cdot 5 $
Artin number field: Splitting field of $f= x^{6} + 6 x^{4} - x^{3} + 9 x^{2} - 3 x + 4 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 14 a + 35 + \left(22 a + 13\right)\cdot 37 + \left(21 a + 1\right)\cdot 37^{2} + \left(32 a + 13\right)\cdot 37^{3} + \left(31 a + 10\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 a + 17 + \left(14 a + 15\right)\cdot 37 + \left(15 a + 28\right)\cdot 37^{2} + \left(4 a + 10\right)\cdot 37^{3} + \left(5 a + 31\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 33 + 7\cdot 37 + \left(2 a + 25\right)\cdot 37^{2} + \left(17 a + 34\right)\cdot 37^{3} + \left(26 a + 4\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 33 a + 24 + \left(21 a + 13\right)\cdot 37 + \left(19 a + 20\right)\cdot 37^{2} + \left(15 a + 28\right)\cdot 37^{3} + 5 a\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 19 a + 31 + \left(36 a + 28\right)\cdot 37 + \left(34 a + 32\right)\cdot 37^{2} + \left(19 a + 26\right)\cdot 37^{3} + \left(10 a + 19\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 8 + \left(15 a + 31\right)\cdot 37 + \left(17 a + 2\right)\cdot 37^{2} + \left(21 a + 34\right)\cdot 37^{3} + \left(31 a + 6\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,6)(2,3,4)$
$(1,2,6,4,5,3)$
$(1,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,4)(2,5)(3,6)$ $0$ $0$
$1$ $3$ $(1,5,6)(2,3,4)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,6,5)(2,4,3)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,6,5)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,5,6)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,5,6)(2,4,3)$ $-1$ $-1$
$3$ $6$ $(1,2,6,4,5,3)$ $0$ $0$
$3$ $6$ $(1,3,5,4,6,2)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.