Properties

Label 2.3e4_31e2.6t5.2
Dimension 2
Group $S_3\times C_3$
Conductor $ 3^{4} \cdot 31^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$77841= 3^{4} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{6} - 31 x^{3} + 279 x^{2} - 1023 x + 1178 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + 12 + \left(6 a + 6\right)\cdot 13 + \left(3 a + 10\right)\cdot 13^{2} + \left(7 a + 1\right)\cdot 13^{3} + \left(6 a + 5\right)\cdot 13^{4} + \left(9 a + 12\right)\cdot 13^{5} + \left(8 a + 4\right)\cdot 13^{6} + \left(8 a + 3\right)\cdot 13^{7} + \left(3 a + 9\right)\cdot 13^{8} + 2 a\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 8 a + 11 + \left(8 a + 8\right)\cdot 13 + 3\cdot 13^{2} + \left(3 a + 7\right)\cdot 13^{3} + \left(12 a + 9\right)\cdot 13^{4} + \left(6 a + 12\right)\cdot 13^{5} + \left(4 a + 7\right)\cdot 13^{6} + \left(9 a + 2\right)\cdot 13^{7} + \left(11 a + 8\right)\cdot 13^{8} + \left(8 a + 8\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 1 + \left(6 a + 11\right)\cdot 13 + \left(9 a + 7\right)\cdot 13^{2} + \left(5 a + 5\right)\cdot 13^{3} + \left(6 a + 4\right)\cdot 13^{4} + \left(3 a + 2\right)\cdot 13^{5} + \left(4 a + 4\right)\cdot 13^{6} + \left(4 a + 3\right)\cdot 13^{7} + \left(9 a + 4\right)\cdot 13^{8} + \left(10 a + 12\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 6 + \left(a + 5\right)\cdot 13 + \left(4 a + 9\right)\cdot 13^{2} + \left(10 a + 10\right)\cdot 13^{3} + \left(5 a + 2\right)\cdot 13^{4} + \left(3 a + 3\right)\cdot 13^{5} + 3\cdot 13^{6} + \left(5 a + 2\right)\cdot 13^{7} + \left(2 a + 11\right)\cdot 13^{8} + \left(11 a + 7\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 5 a + 6 + \left(4 a + 9\right)\cdot 13 + \left(12 a + 8\right)\cdot 13^{2} + \left(9 a + 9\right)\cdot 13^{3} + 5\cdot 13^{4} + \left(6 a + 7\right)\cdot 13^{5} + \left(8 a + 5\right)\cdot 13^{6} + \left(3 a + 7\right)\cdot 13^{7} + \left(a + 10\right)\cdot 13^{8} + \left(4 a + 5\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 3 a + 3 + \left(11 a + 10\right)\cdot 13 + \left(8 a + 11\right)\cdot 13^{2} + \left(2 a + 3\right)\cdot 13^{3} + \left(7 a + 11\right)\cdot 13^{4} + 9 a\cdot 13^{5} + 12 a\cdot 13^{6} + \left(7 a + 7\right)\cdot 13^{7} + \left(10 a + 8\right)\cdot 13^{8} + \left(a + 3\right)\cdot 13^{9} +O\left(13^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)(3,4,5)$
$(1,4,2,3,6,5)$
$(1,6,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,3)(2,5)(4,6)$ $0$ $0$
$1$ $3$ $(1,2,6)(3,5,4)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,6,2)(3,4,5)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,2,6)(3,4,5)$ $-1$ $-1$
$2$ $3$ $(1,6,2)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,2,6)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$3$ $6$ $(1,4,2,3,6,5)$ $0$ $0$
$3$ $6$ $(1,5,6,3,2,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.