Properties

Label 2.3e4_31.9t3.1c1
Dimension 2
Group $D_{9}$
Conductor $ 3^{4} \cdot 31 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$2511= 3^{4} \cdot 31 $
Artin number field: Splitting field of $f= x^{9} + 6 x^{7} - 11 x^{6} + 9 x^{5} - 48 x^{4} + 12 x^{3} - 99 x^{2} + 54 x - 53 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.31.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{3} + 3 x + 42 $
Roots:
$r_{ 1 }$ $=$ $ a^{2} + 30 a + 2 + \left(37 a^{2} + 30 a + 27\right)\cdot 47 + \left(8 a^{2} + 21 a + 17\right)\cdot 47^{2} + \left(18 a^{2} + 24 a + 36\right)\cdot 47^{3} + \left(40 a^{2} + 45 a + 33\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 a^{2} + 43 a + 32 + \left(10 a^{2} + 11 a + 20\right)\cdot 47 + \left(33 a^{2} + 32 a + 19\right)\cdot 47^{2} + \left(46 a^{2} + 9 a + 46\right)\cdot 47^{3} + \left(10 a^{2} + 7 a + 21\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 44 a^{2} + 12 a + 41 + \left(25 a^{2} + 5 a + 4\right)\cdot 47 + \left(11 a^{2} + 29 a + 23\right)\cdot 47^{2} + \left(31 a^{2} + 37 a + 15\right)\cdot 47^{3} + \left(42 a^{2} + 23 a + 38\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 32 a^{2} + 15 a + 17 + \left(5 a^{2} + 19 a + 11\right)\cdot 47 + \left(43 a^{2} + 34 a + 39\right)\cdot 47^{2} + \left(21 a^{2} + 22 a + 43\right)\cdot 47^{3} + \left(40 a^{2} + 25 a + 33\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 a^{2} + 16 a + 10 + \left(30 a^{2} + 5 a + 13\right)\cdot 47 + \left(16 a^{2} + 27 a + 33\right)\cdot 47^{2} + \left(26 a^{2} + 23 a + 5\right)\cdot 47^{3} + \left(21 a^{2} + 36 a + 43\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 14 a^{2} + 2 a + 28 + \left(4 a^{2} + 44 a + 8\right)\cdot 47 + \left(42 a^{2} + 37 a + 37\right)\cdot 47^{2} + \left(6 a^{2} + 46 a + 13\right)\cdot 47^{3} + \left(13 a^{2} + 22 a + 26\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 19 a^{2} + 20 a + 38 + \left(14 a^{2} + 13 a + 28\right)\cdot 47 + \left(26 a^{2} + 3 a + 5\right)\cdot 47^{2} + \left(13 a^{2} + 36 a + 27\right)\cdot 47^{3} + \left(24 a^{2} + 8 a + 1\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 23 a^{2} + 11 a + 46 + \left(2 a^{2} + 28 a + 4\right)\cdot 47 + \left(4 a^{2} + 16 a + 8\right)\cdot 47^{2} + \left(7 a^{2} + 34 a + 14\right)\cdot 47^{3} + \left(a^{2} + a + 2\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 34 a^{2} + 39 a + 21 + \left(10 a^{2} + 29 a + 21\right)\cdot 47 + \left(2 a^{2} + 32 a + 4\right)\cdot 47^{2} + \left(16 a^{2} + 46 a + 32\right)\cdot 47^{3} + \left(40 a^{2} + 15 a + 33\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,5,2,4,8,9,6,7,3)$
$(1,8)(3,9)(4,5)(6,7)$
$(1,4,6)(2,9,3)(5,8,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,8)(3,9)(4,5)(6,7)$$0$
$2$$3$$(1,4,6)(2,9,3)(5,8,7)$$-1$
$2$$9$$(1,5,2,4,8,9,6,7,3)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$$9$$(1,2,8,6,3,5,4,9,7)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
$2$$9$$(1,8,3,4,7,2,6,5,9)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.