Properties

Label 2.3e4_23.9t3.1c1
Dimension 2
Group $D_{9}$
Conductor $ 3^{4} \cdot 23 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$1863= 3^{4} \cdot 23 $
Artin number field: Splitting field of $f= x^{9} - 6 x^{7} - 5 x^{6} + 27 x^{5} - 3 x^{4} - 11 x^{3} - 45 x^{2} + 60 x - 37 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.23.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{3} + 5 x + 57 $
Roots:
$r_{ 1 }$ $=$ $ 36 a^{2} + 39 a + 2 + \left(14 a^{2} + 23 a + 29\right)\cdot 59 + \left(25 a^{2} + 54 a + 5\right)\cdot 59^{2} + \left(21 a^{2} + 23 a + 32\right)\cdot 59^{3} + \left(32 a^{2} + 18 a + 9\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 a^{2} + 25 a + 1 + \left(5 a^{2} + 46 a + 57\right)\cdot 59 + \left(26 a^{2} + 51 a + 27\right)\cdot 59^{2} + \left(25 a^{2} + 57 a + 45\right)\cdot 59^{3} + \left(52 a^{2} + 26 a + 56\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 47 a^{2} + 27 a + 19 + \left(11 a^{2} + 31 a + 39\right)\cdot 59 + \left(2 a^{2} + 46 a + 46\right)\cdot 59^{2} + \left(36 a^{2} + 49 a + 21\right)\cdot 59^{3} + \left(19 a^{2} + 4 a + 6\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 55 a^{2} + 4 a + 26 + \left(14 a^{2} + 57 a + 10\right)\cdot 59 + \left(25 a^{2} + 47 a + 25\right)\cdot 59^{2} + \left(29 a^{2} + 24 a + 19\right)\cdot 59^{3} + \left(53 a^{2} + 28 a + 1\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 a^{2} + 23 a + 27 + \left(18 a^{2} + 46 a + 21\right)\cdot 59 + \left(30 a^{2} + 41 a + 22\right)\cdot 59^{2} + \left(10 a^{2} + 30 a + 15\right)\cdot 59^{3} + \left(9 a^{2} + 31 a + 50\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 9 a^{2} + 56 a + 30 + \left(26 a^{2} + 47 a + 8\right)\cdot 59 + \left(3 a^{2} + 21 a + 31\right)\cdot 59^{2} + \left(27 a^{2} + 4 a + 11\right)\cdot 59^{3} + \left(17 a^{2} + 9 a + 58\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 30 a^{2} + 55 a + 41 + \left(44 a^{2} + 2 a + 10\right)\cdot 59 + \left(45 a^{2} + 25 a + 54\right)\cdot 59^{2} + \left(48 a^{2} + 49 a + 24\right)\cdot 59^{3} + \left(21 a^{2} + 17 a + 33\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 16 a^{2} + 28 a + 14 + \left(32 a^{2} + 29 a + 9\right)\cdot 59 + \left(31 a^{2} + 23 a + 46\right)\cdot 59^{2} + \left(52 a^{2} + 43 a + 17\right)\cdot 59^{3} + \left(44 a^{2} + 25 a + 51\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 11 a^{2} + 38 a + 17 + \left(9 a^{2} + 9 a + 50\right)\cdot 59 + \left(46 a^{2} + 41 a + 35\right)\cdot 59^{2} + \left(43 a^{2} + 10 a + 47\right)\cdot 59^{3} + \left(43 a^{2} + 14 a + 27\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,6,5)(2,9,7)(3,4,8)$
$(1,5)(2,4)(3,9)(7,8)$
$(1,7,4,6,2,8,5,9,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,5)(2,4)(3,9)(7,8)$$0$
$2$$3$$(1,6,5)(2,9,7)(3,4,8)$$-1$
$2$$9$$(1,7,4,6,2,8,5,9,3)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$$9$$(1,4,2,5,3,7,6,8,9)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
$2$$9$$(1,2,3,6,9,4,5,7,8)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.