Properties

Label 2.3e4_17e2.6t5.1
Dimension 2
Group $S_3\times C_3$
Conductor $ 3^{4} \cdot 17^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$23409= 3^{4} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - 17 x^{3} + 289 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 24 a + 35 + \left(25 a + 52\right)\cdot 53 + \left(26 a + 4\right)\cdot 53^{2} + \left(48 a + 9\right)\cdot 53^{3} + \left(17 a + 21\right)\cdot 53^{4} + \left(52 a + 5\right)\cdot 53^{5} + \left(17 a + 39\right)\cdot 53^{6} + \left(37 a + 1\right)\cdot 53^{7} +O\left(53^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 34 a + 9 + \left(26 a + 16\right)\cdot 53 + \left(12 a + 16\right)\cdot 53^{2} + \left(3 a + 35\right)\cdot 53^{3} + \left(17 a + 27\right)\cdot 53^{4} + \left(29 a + 23\right)\cdot 53^{5} + \left(5 a + 20\right)\cdot 53^{6} + \left(48 a + 12\right)\cdot 53^{7} +O\left(53^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 19 a + 39 + \left(26 a + 35\right)\cdot 53 + \left(40 a + 39\right)\cdot 53^{2} + \left(49 a + 35\right)\cdot 53^{3} + \left(35 a + 39\right)\cdot 53^{4} + \left(23 a + 17\right)\cdot 53^{5} + \left(47 a + 13\right)\cdot 53^{6} + \left(4 a + 40\right)\cdot 53^{7} +O\left(53^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 29 a + 25 + \left(27 a + 24\right)\cdot 53 + \left(26 a + 32\right)\cdot 53^{2} + \left(4 a + 17\right)\cdot 53^{3} + \left(35 a + 44\right)\cdot 53^{4} + 37\cdot 53^{5} + \left(35 a + 5\right)\cdot 53^{6} + \left(15 a + 27\right)\cdot 53^{7} +O\left(53^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 32 + \left(a + 17\right)\cdot 53 + \left(39 a + 8\right)\cdot 53^{2} + \left(7 a + 8\right)\cdot 53^{3} + \left(52 a + 45\right)\cdot 53^{4} + \left(29 a + 29\right)\cdot 53^{5} + 40 a\cdot 53^{6} + \left(10 a + 11\right)\cdot 53^{7} +O\left(53^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 43 a + 19 + \left(51 a + 12\right)\cdot 53 + \left(13 a + 4\right)\cdot 53^{2} + 45 a\cdot 53^{3} + 34\cdot 53^{4} + \left(23 a + 44\right)\cdot 53^{5} + \left(12 a + 26\right)\cdot 53^{6} + \left(42 a + 13\right)\cdot 53^{7} +O\left(53^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,5)$
$(1,4,3,2,5,6)$
$(1,3,5)(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,2)(3,6)(4,5)$ $0$ $0$
$1$ $3$ $(1,3,5)(2,6,4)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,5,3)(2,4,6)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,3,5)(2,4,6)$ $-1$ $-1$
$2$ $3$ $(1,3,5)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,5,3)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$3$ $6$ $(1,4,3,2,5,6)$ $0$ $0$
$3$ $6$ $(1,6,5,2,3,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.