Properties

Label 2.3e4_131.6t3.2c1
Dimension 2
Group $D_{6}$
Conductor $ 3^{4} \cdot 131 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$10611= 3^{4} \cdot 131 $
Artin number field: Splitting field of $f= x^{6} - 6 x^{4} - 38 x^{3} + 36 x^{2} + 114 x + 361 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.131.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 11 a + 6 + \left(3 a + 12\right)\cdot 31 + \left(21 a + 9\right)\cdot 31^{2} + \left(22 a + 4\right)\cdot 31^{3} + \left(15 a + 6\right)\cdot 31^{4} + \left(11 a + 22\right)\cdot 31^{5} + \left(30 a + 30\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 16 + \left(15 a + 28\right)\cdot 31 + 17 a\cdot 31^{2} + \left(11 a + 23\right)\cdot 31^{3} + \left(19 a + 29\right)\cdot 31^{4} + \left(24 a + 25\right)\cdot 31^{5} + \left(27 a + 28\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 16 + 12\cdot 31 + 9\cdot 31^{2} + 10\cdot 31^{3} + 6\cdot 31^{4} + 11\cdot 31^{5} + 4\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 20 a + 28 + \left(27 a + 7\right)\cdot 31 + \left(9 a + 17\right)\cdot 31^{2} + \left(8 a + 28\right)\cdot 31^{3} + \left(15 a + 14\right)\cdot 31^{4} + \left(19 a + 29\right)\cdot 31^{5} + 17\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 28 + 10\cdot 31 + 4\cdot 31^{2} + 29\cdot 31^{3} + 9\cdot 31^{4} + 10\cdot 31^{5} + 13\cdot 31^{6} +O\left(31^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 24 a + 30 + \left(15 a + 20\right)\cdot 31 + \left(13 a + 20\right)\cdot 31^{2} + \left(19 a + 28\right)\cdot 31^{3} + \left(11 a + 25\right)\cdot 31^{4} + \left(6 a + 24\right)\cdot 31^{5} + \left(3 a + 28\right)\cdot 31^{6} +O\left(31^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,5)$
$(1,2)(3,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,4)(3,5)$$-2$
$3$$2$$(1,2)(3,5)(4,6)$$0$
$3$$2$$(1,5)(3,6)$$0$
$2$$3$$(1,4,5)(2,3,6)$$-1$
$2$$6$$(1,3,4,6,5,2)$$1$
The blue line marks the conjugacy class containing complex conjugation.