Properties

Label 2.3e3_97.24t22.4c1
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 3^{3} \cdot 97 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$2619= 3^{3} \cdot 97 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 9 x^{6} - 13 x^{5} + 15 x^{4} - 33 x^{3} + 30 x^{2} - 18 x + 9 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.3_97.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 89 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 89 }$: $ x^{2} + 82 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 27 + 37\cdot 89 + 40\cdot 89^{2} + 85\cdot 89^{3} + 17\cdot 89^{4} + 86\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 42 + 41\cdot 89 + 21\cdot 89^{3} + 80\cdot 89^{4} + 17\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 83 a + 15 + \left(32 a + 75\right)\cdot 89 + \left(61 a + 54\right)\cdot 89^{2} + \left(27 a + 81\right)\cdot 89^{3} + \left(64 a + 77\right)\cdot 89^{4} + \left(40 a + 31\right)\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 62 + \left(56 a + 44\right)\cdot 89 + \left(27 a + 6\right)\cdot 89^{2} + \left(61 a + 36\right)\cdot 89^{3} + \left(24 a + 55\right)\cdot 89^{4} + \left(48 a + 74\right)\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 5 }$ $=$ $ a + 44 + \left(87 a + 54\right)\cdot 89 + \left(49 a + 26\right)\cdot 89^{2} + \left(30 a + 49\right)\cdot 89^{3} + \left(57 a + 18\right)\cdot 89^{4} + \left(32 a + 45\right)\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 23 a + 23 + \left(83 a + 63\right)\cdot 89 + \left(33 a + 69\right)\cdot 89^{2} + \left(50 a + 86\right)\cdot 89^{3} + \left(59 a + 30\right)\cdot 89^{4} + \left(77 a + 11\right)\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 88 a + 51 + \left(a + 39\right)\cdot 89 + \left(39 a + 22\right)\cdot 89^{2} + \left(58 a + 35\right)\cdot 89^{3} + \left(31 a + 33\right)\cdot 89^{4} + \left(56 a + 38\right)\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 66 a + 6 + 5 a\cdot 89 + \left(55 a + 46\right)\cdot 89^{2} + \left(38 a + 49\right)\cdot 89^{3} + \left(29 a + 41\right)\cdot 89^{4} + \left(11 a + 50\right)\cdot 89^{5} +O\left(89^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,2,4)(5,7,8,6)$
$(1,5,7)(2,8,6)$
$(1,8)(2,5)(6,7)$
$(1,2)(3,4)(5,8)(6,7)$
$(1,7,2,6)(3,5,4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)(5,8)(6,7)$$-2$
$12$$2$$(1,8)(2,5)(6,7)$$0$
$8$$3$$(3,7,8)(4,6,5)$$-1$
$6$$4$$(1,7,2,6)(3,5,4,8)$$0$
$8$$6$$(1,7,3,2,6,4)(5,8)$$1$
$6$$8$$(1,3,5,6,2,4,8,7)$$-\zeta_{8}^{3} - \zeta_{8}$
$6$$8$$(1,4,5,7,2,3,8,6)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.