Properties

Label 2.3e3_97.24t22.3c2
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 3^{3} \cdot 97 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$2619= 3^{3} \cdot 97 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 3 x^{6} - x^{5} + 11 x^{4} - 8 x^{2} - 2 x + 3 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.3_97.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 6 + 36\cdot 53^{2} + 41\cdot 53^{3} + 14\cdot 53^{4} + 29\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 26 + 44\cdot 53 + 5\cdot 53^{2} + 42\cdot 53^{3} + 11\cdot 53^{4} + 44\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 44 a + 12 + \left(39 a + 20\right)\cdot 53 + \left(6 a + 26\right)\cdot 53^{2} + 5 a\cdot 53^{3} + \left(2 a + 24\right)\cdot 53^{4} + \left(45 a + 16\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 40 a + 15 + \left(9 a + 7\right)\cdot 53 + \left(42 a + 19\right)\cdot 53^{2} + \left(34 a + 8\right)\cdot 53^{3} + \left(43 a + 39\right)\cdot 53^{4} + \left(30 a + 35\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 16 + \left(43 a + 6\right)\cdot 53 + \left(10 a + 19\right)\cdot 53^{2} + \left(18 a + 52\right)\cdot 53^{3} + \left(9 a + 19\right)\cdot 53^{4} + \left(22 a + 9\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 17 a + 21 + \left(17 a + 52\right)\cdot 53 + \left(7 a + 39\right)\cdot 53^{2} + \left(47 a + 41\right)\cdot 53^{3} + \left(27 a + 31\right)\cdot 53^{4} + \left(48 a + 43\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 36 a + 36 + \left(35 a + 51\right)\cdot 53 + \left(45 a + 51\right)\cdot 53^{2} + \left(5 a + 10\right)\cdot 53^{3} + \left(25 a + 43\right)\cdot 53^{4} + \left(4 a + 50\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 9 a + 29 + \left(13 a + 29\right)\cdot 53 + \left(46 a + 13\right)\cdot 53^{2} + \left(47 a + 14\right)\cdot 53^{3} + \left(50 a + 27\right)\cdot 53^{4} + \left(7 a + 35\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,5,6)(4,8,7)$
$(1,8,2,3)(4,7,6,5)$
$(1,2)(3,8)(4,6)(5,7)$
$(3,8)(4,5)(6,7)$
$(1,4,2,6)(3,7,8,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,8)(4,6)(5,7)$$-2$
$12$$2$$(3,8)(4,5)(6,7)$$0$
$8$$3$$(1,7,3)(2,5,8)$$-1$
$6$$4$$(1,8,2,3)(4,7,6,5)$$0$
$8$$6$$(1,2)(3,7,6,8,5,4)$$1$
$6$$8$$(1,4,3,5,2,6,8,7)$$\zeta_{8}^{3} + \zeta_{8}$
$6$$8$$(1,6,3,7,2,4,8,5)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.