Properties

Label 2.3e3_5e2_11e2.6t3.3c1
Dimension 2
Group $D_{6}$
Conductor $ 3^{3} \cdot 5^{2} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$81675= 3^{3} \cdot 5^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 12 x^{4} - 9 x^{3} + 21 x^{2} - 102 x + 92 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 5\cdot 23 + 2\cdot 23^{2} + 9\cdot 23^{3} + 5\cdot 23^{4} + 3\cdot 23^{5} + 10\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 10 + \left(21 a + 6\right)\cdot 23 + \left(14 a + 10\right)\cdot 23^{2} + \left(4 a + 16\right)\cdot 23^{3} + \left(9 a + 17\right)\cdot 23^{4} + \left(13 a + 14\right)\cdot 23^{5} + \left(8 a + 13\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 10 + \left(a + 6\right)\cdot 23 + \left(8 a + 13\right)\cdot 23^{2} + \left(18 a + 9\right)\cdot 23^{3} + \left(13 a + 10\right)\cdot 23^{4} + \left(9 a + 6\right)\cdot 23^{5} + \left(14 a + 5\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 19 + \left(21 a + 16\right)\cdot 23 + \left(14 a + 4\right)\cdot 23^{2} + \left(4 a + 15\right)\cdot 23^{3} + \left(9 a + 19\right)\cdot 23^{4} + \left(13 a + 11\right)\cdot 23^{5} + \left(8 a + 1\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 9 + 15\cdot 23 + 19\cdot 23^{2} + 7\cdot 23^{3} + 7\cdot 23^{4} + 21\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 16 a + 1 + \left(a + 19\right)\cdot 23 + \left(8 a + 18\right)\cdot 23^{2} + \left(18 a + 10\right)\cdot 23^{3} + \left(13 a + 8\right)\cdot 23^{4} + \left(9 a + 9\right)\cdot 23^{5} + \left(14 a + 17\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2,6)(3,5,4)$
$(2,6)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,4)(3,6)$$-2$
$3$$2$$(1,3)(2,4)(5,6)$$0$
$3$$2$$(2,6)(3,4)$$0$
$2$$3$$(1,2,6)(3,5,4)$$-1$
$2$$6$$(1,3,2,5,6,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.