Properties

Label 2.3e3_5_17.9t3.1c1
Dimension 2
Group $D_{9}$
Conductor $ 3^{3} \cdot 5 \cdot 17 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$2295= 3^{3} \cdot 5 \cdot 17 $
Artin number field: Splitting field of $f= x^{9} + 6 x^{7} - 16 x^{6} + 15 x^{5} - 18 x^{4} + 23 x^{3} + 9 x^{2} - 5 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.3_5_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{3} + 4 x + 64 $
Roots:
$r_{ 1 }$ $=$ $ 3 a^{2} + 62 a + 66 + \left(54 a^{2} + 30 a + 4\right)\cdot 71 + \left(33 a^{2} + 22 a + 12\right)\cdot 71^{2} + \left(5 a^{2} + 21 a + 15\right)\cdot 71^{3} + \left(45 a^{2} + 31 a + 28\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 51 a^{2} + 34 a + 52 + \left(35 a^{2} + 22 a + 50\right)\cdot 71 + \left(41 a^{2} + 70 a + 32\right)\cdot 71^{2} + \left(65 a^{2} + 25 a + 33\right)\cdot 71^{3} + \left(47 a^{2} + 54 a + 59\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 a^{2} + 23 a + 42 + \left(64 a^{2} + 15 a + 58\right)\cdot 71 + \left(24 a^{2} + 64 a + 38\right)\cdot 71^{2} + \left(31 a^{2} + 40 a + 68\right)\cdot 71^{3} + \left(56 a^{2} + 20 a + 1\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 29 a^{2} + 25 a + 4 + \left(40 a^{2} + 36 a + 28\right)\cdot 71 + \left(58 a^{2} + 35 a + 1\right)\cdot 71^{2} + \left(51 a^{2} + 51 a + 58\right)\cdot 71^{3} + \left(68 a^{2} + 10 a + 68\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 13 a^{2} + 9 a + 50 + \left(69 a^{2} + 62 a + 24\right)\cdot 71 + \left(37 a^{2} + 60 a + 26\right)\cdot 71^{2} + \left(33 a^{2} + 41 a + 3\right)\cdot 71^{3} + \left(48 a^{2} + 35 a + 28\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 48 a^{2} + 39 a + 25 + \left(8 a^{2} + 64 a + 5\right)\cdot 71 + \left(8 a^{2} + 16 a + 65\right)\cdot 71^{2} + \left(6 a^{2} + 59 a + 24\right)\cdot 71^{3} + \left(37 a^{2} + 14 a + 21\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 49 a + 45 + \left(18 a^{2} + 36 a + 15\right)\cdot 71 + \left(37 a^{2} + 27 a + 39\right)\cdot 71^{2} + \left(35 a^{2} + 6 a + 14\right)\cdot 71^{3} + \left(58 a^{2} + 26 a + 65\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 17 a^{2} + 46 a + 56 + \left(52 a^{2} + 17 a + 23\right)\cdot 71 + \left(66 a^{2} + 49 a + 5\right)\cdot 71^{2} + \left(70 a^{2} + 23 a + 24\right)\cdot 71^{3} + \left(48 a^{2} + 56 a + 62\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 42 a^{2} + 68 a + 15 + \left(12 a^{2} + 68 a + 1\right)\cdot 71 + \left(46 a^{2} + 7 a + 63\right)\cdot 71^{2} + \left(54 a^{2} + 13 a + 41\right)\cdot 71^{3} + \left(14 a^{2} + 34 a + 19\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,8,2)(3,6,5)(4,7,9)$
$(1,6)(2,5)(3,8)(4,7)$
$(1,4,3,8,7,6,2,9,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,6)(2,5)(3,8)(4,7)$$0$
$2$$3$$(1,8,2)(3,6,5)(4,7,9)$$-1$
$2$$9$$(1,4,3,8,7,6,2,9,5)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
$2$$9$$(1,3,7,2,5,4,8,6,9)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
$2$$9$$(1,7,5,8,9,3,2,4,6)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.