Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 15 a + 9 + \left(14 a + 3\right)\cdot 17 + \left(9 a + 12\right)\cdot 17^{2} + \left(7 a + 1\right)\cdot 17^{3} + \left(14 a + 5\right)\cdot 17^{4} + \left(6 a + 4\right)\cdot 17^{5} + 9\cdot 17^{6} + \left(5 a + 15\right)\cdot 17^{7} + \left(10 a + 6\right)\cdot 17^{8} + \left(13 a + 14\right)\cdot 17^{9} + \left(11 a + 11\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 12 a + 3 + \left(16 a + 6\right)\cdot 17 + \left(8 a + 12\right)\cdot 17^{2} + \left(16 a + 4\right)\cdot 17^{3} + \left(16 a + 8\right)\cdot 17^{4} + \left(10 a + 11\right)\cdot 17^{5} + \left(16 a + 5\right)\cdot 17^{6} + \left(13 a + 1\right)\cdot 17^{7} + \left(9 a + 2\right)\cdot 17^{8} + \left(5 a + 2\right)\cdot 17^{9} + \left(8 a + 7\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 10 + 12\cdot 17 + 7\cdot 17^{2} + 10\cdot 17^{3} + 8\cdot 17^{5} + 9\cdot 17^{6} + 5\cdot 17^{9} + 10\cdot 17^{10} +O\left(17^{ 11 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 2 a + 9 + \left(2 a + 13\right)\cdot 17 + \left(7 a + 4\right)\cdot 17^{2} + \left(9 a + 15\right)\cdot 17^{3} + \left(2 a + 11\right)\cdot 17^{4} + \left(10 a + 12\right)\cdot 17^{5} + \left(16 a + 7\right)\cdot 17^{6} + \left(11 a + 1\right)\cdot 17^{7} + \left(6 a + 10\right)\cdot 17^{8} + \left(3 a + 2\right)\cdot 17^{9} + \left(5 a + 5\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 8 + 4\cdot 17 + 9\cdot 17^{2} + 6\cdot 17^{3} + 16\cdot 17^{4} + 8\cdot 17^{5} + 7\cdot 17^{6} + 16\cdot 17^{7} + 16\cdot 17^{8} + 11\cdot 17^{9} + 6\cdot 17^{10} +O\left(17^{ 11 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 2 a + 7 + \left(2 a + 3\right)\cdot 17 + \left(7 a + 7\right)\cdot 17^{2} + \left(9 a + 16\right)\cdot 17^{3} + \left(2 a + 11\right)\cdot 17^{4} + \left(10 a + 13\right)\cdot 17^{5} + \left(16 a + 2\right)\cdot 17^{6} + \left(11 a + 3\right)\cdot 17^{7} + \left(6 a + 12\right)\cdot 17^{8} + 3 a\cdot 17^{9} + \left(5 a + 10\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 5 a + 15 + 10\cdot 17 + \left(8 a + 4\right)\cdot 17^{2} + 12\cdot 17^{3} + 8\cdot 17^{4} + \left(6 a + 5\right)\cdot 17^{5} + 11\cdot 17^{6} + \left(3 a + 15\right)\cdot 17^{7} + \left(7 a + 14\right)\cdot 17^{8} + \left(11 a + 14\right)\cdot 17^{9} + \left(8 a + 9\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 15 a + 11 + \left(14 a + 13\right)\cdot 17 + \left(9 a + 9\right)\cdot 17^{2} + 7 a\cdot 17^{3} + \left(14 a + 5\right)\cdot 17^{4} + \left(6 a + 3\right)\cdot 17^{5} + 14\cdot 17^{6} + \left(5 a + 13\right)\cdot 17^{7} + \left(10 a + 4\right)\cdot 17^{8} + \left(13 a + 16\right)\cdot 17^{9} + \left(11 a + 6\right)\cdot 17^{10} +O\left(17^{ 11 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4)(2,6)(7,8)$ |
| $(1,8,2)(4,6,7)$ |
| $(1,8,4,6)(2,3,7,5)$ |
| $(1,4)(2,7)(3,5)(6,8)$ |
| $(1,5,4,3)(2,8,7,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,4)(2,7)(3,5)(6,8)$ |
$-2$ |
$-2$ |
| $12$ |
$2$ |
$(1,4)(2,6)(7,8)$ |
$0$ |
$0$ |
| $8$ |
$3$ |
$(1,8,2)(4,6,7)$ |
$-1$ |
$-1$ |
| $6$ |
$4$ |
$(1,8,4,6)(2,3,7,5)$ |
$0$ |
$0$ |
| $8$ |
$6$ |
$(1,4)(2,8,3,7,6,5)$ |
$1$ |
$1$ |
| $6$ |
$8$ |
$(1,7,5,6,4,2,3,8)$ |
$-\zeta_{8}^{3} - \zeta_{8}$ |
$\zeta_{8}^{3} + \zeta_{8}$ |
| $6$ |
$8$ |
$(1,2,5,8,4,7,3,6)$ |
$\zeta_{8}^{3} + \zeta_{8}$ |
$-\zeta_{8}^{3} - \zeta_{8}$ |
The blue line marks the conjugacy class containing complex conjugation.