Properties

Label 2.3e3_41.24t22.4
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 3^{3} \cdot 41 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$1107= 3^{3} \cdot 41 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 2 x^{6} - x^{5} + 2 x^{4} + x^{3} - 5 x^{2} + 4 x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ a + 5 + \left(21 a + 15\right)\cdot 23 + \left(18 a + 1\right)\cdot 23^{2} + 16\cdot 23^{3} + \left(19 a + 7\right)\cdot 23^{4} + \left(21 a + 17\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 19 a + 17 + \left(5 a + 21\right)\cdot 23 + \left(a + 21\right)\cdot 23^{2} + 11 a\cdot 23^{3} + \left(2 a + 13\right)\cdot 23^{4} + \left(17 a + 15\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 22 a + 7 + \left(a + 10\right)\cdot 23 + \left(4 a + 18\right)\cdot 23^{2} + \left(22 a + 21\right)\cdot 23^{3} + \left(3 a + 21\right)\cdot 23^{4} + \left(a + 18\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 16 + 20\cdot 23 + 23^{2} + 14\cdot 23^{3} + 16\cdot 23^{4} + 15\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 9 + \left(17 a + 14\right)\cdot 23 + \left(21 a + 18\right)\cdot 23^{2} + \left(11 a + 21\right)\cdot 23^{3} + \left(20 a + 6\right)\cdot 23^{4} + \left(5 a + 1\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 21 + 20\cdot 23 + 19\cdot 23^{2} + 20\cdot 23^{3} + 15\cdot 23^{4} + 14\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 4 a + 17 + \left(6 a + 1\right)\cdot 23 + \left(3 a + 16\right)\cdot 23^{2} + 22 a\cdot 23^{3} + \left(13 a + 2\right)\cdot 23^{4} + \left(5 a + 17\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 19 a + 2 + \left(16 a + 10\right)\cdot 23 + \left(19 a + 16\right)\cdot 23^{2} + 18\cdot 23^{3} + \left(9 a + 7\right)\cdot 23^{4} + \left(17 a + 14\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,8,2)(3,6,7,4)$
$(1,3,4)(6,8,7)$
$(1,8)(2,5)(3,7)(4,6)$
$(1,6)(3,7)(4,8)$
$(1,3,8,7)(2,6,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,5)(3,7)(4,6)$ $-2$ $-2$
$12$ $2$ $(1,6)(3,7)(4,8)$ $0$ $0$
$8$ $3$ $(1,5,7)(2,3,8)$ $-1$ $-1$
$6$ $4$ $(1,5,8,2)(3,6,7,4)$ $0$ $0$
$8$ $6$ $(1,8)(2,6,7,5,4,3)$ $1$ $1$
$6$ $8$ $(1,7,6,5,8,3,4,2)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$6$ $8$ $(1,3,6,2,8,7,4,5)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.