Properties

Label 2.3e3_31.6t3.1
Dimension 2
Group $D_{6}$
Conductor $ 3^{3} \cdot 31 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$837= 3^{3} \cdot 31 $
Artin number field: Splitting field of $f= x^{6} - x^{3} + 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 33 a + 1 + \left(9 a + 39\right)\cdot 41 + \left(11 a + 26\right)\cdot 41^{2} + \left(16 a + 22\right)\cdot 41^{3} + \left(38 a + 12\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 10 + \left(16 a + 21\right)\cdot 41 + \left(39 a + 27\right)\cdot 41^{2} + \left(16 a + 31\right)\cdot 41^{3} + \left(32 a + 38\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 8 a + 18 + \left(31 a + 35\right)\cdot 41 + \left(29 a + 9\right)\cdot 41^{2} + \left(24 a + 19\right)\cdot 41^{3} + \left(2 a + 29\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 39 a + 16 + \left(24 a + 26\right)\cdot 41 + \left(a + 6\right)\cdot 41^{2} + \left(24 a + 2\right)\cdot 41^{3} + \left(8 a + 37\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 22 + 7\cdot 41 + 4\cdot 41^{2} + 40\cdot 41^{3} + 39\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 15 + 34\cdot 41 + 6\cdot 41^{2} + 7\cdot 41^{3} + 6\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,6)(3,5)$
$(1,2,5,4,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)(5,6)$ $-2$
$3$ $2$ $(2,6)(3,5)$ $0$
$3$ $2$ $(1,2)(3,4)(5,6)$ $0$
$2$ $3$ $(1,5,3)(2,4,6)$ $-1$
$2$ $6$ $(1,2,5,4,3,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.