Properties

Label 2.3e3_257.24t22.1
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 3^{3} \cdot 257 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$6939= 3^{3} \cdot 257 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 7 x^{6} + 6 x^{5} - 24 x^{4} + 21 x^{3} + 9 x^{2} - 27 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 3\cdot 11 + 5\cdot 11^{2} + 3\cdot 11^{3} + 10\cdot 11^{4} + 8\cdot 11^{6} + 2\cdot 11^{7} + 6\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 8 + \left(7 a + 9\right)\cdot 11 + \left(2 a + 2\right)\cdot 11^{2} + \left(10 a + 9\right)\cdot 11^{3} + \left(5 a + 5\right)\cdot 11^{4} + 6\cdot 11^{5} + \left(4 a + 9\right)\cdot 11^{6} + \left(8 a + 2\right)\cdot 11^{7} + \left(5 a + 2\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 5 + 4\cdot 11 + 3\cdot 11^{2} + 9\cdot 11^{3} + 10\cdot 11^{4} + 4\cdot 11^{5} + 7\cdot 11^{6} + 2\cdot 11^{7} + 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 4 + 9 a\cdot 11 + \left(4 a + 6\right)\cdot 11^{2} + \left(2 a + 1\right)\cdot 11^{3} + \left(2 a + 1\right)\cdot 11^{4} + \left(a + 10\right)\cdot 11^{5} + \left(4 a + 4\right)\cdot 11^{6} + \left(9 a + 9\right)\cdot 11^{7} + 6 a\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 2 + 5 a\cdot 11 + \left(a + 2\right)\cdot 11^{2} + \left(3 a + 5\right)\cdot 11^{3} + \left(10 a + 8\right)\cdot 11^{4} + \left(3 a + 5\right)\cdot 11^{5} + 9 a\cdot 11^{6} + \left(10 a + 8\right)\cdot 11^{7} + \left(7 a + 4\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 8 + \left(5 a + 4\right)\cdot 11 + \left(9 a + 2\right)\cdot 11^{2} + \left(7 a + 5\right)\cdot 11^{3} + 2\cdot 11^{4} + 7 a\cdot 11^{5} + \left(a + 1\right)\cdot 11^{6} + 9\cdot 11^{7} + \left(3 a + 3\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 4 a + 3 + 3 a\cdot 11 + \left(8 a + 6\right)\cdot 11^{2} + 3\cdot 11^{3} + \left(5 a + 8\right)\cdot 11^{4} + \left(10 a + 2\right)\cdot 11^{5} + \left(6 a + 3\right)\cdot 11^{6} + \left(2 a + 10\right)\cdot 11^{7} + \left(5 a + 5\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 5 a + 6 + \left(a + 10\right)\cdot 11 + \left(6 a + 4\right)\cdot 11^{2} + \left(8 a + 6\right)\cdot 11^{3} + \left(8 a + 7\right)\cdot 11^{4} + \left(9 a + 1\right)\cdot 11^{5} + \left(6 a + 9\right)\cdot 11^{6} + \left(a + 9\right)\cdot 11^{7} + \left(4 a + 7\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,4)(5,7,6,8)$
$(2,8,6)(4,7,5)$
$(1,7,3,8)(2,5,4,6)$
$(2,4)(5,8)(6,7)$
$(1,3)(2,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,3)(2,4)(5,6)(7,8)$ $-2$ $-2$
$12$ $2$ $(2,4)(5,8)(6,7)$ $0$ $0$
$8$ $3$ $(1,2,5)(3,4,6)$ $-1$ $-1$
$6$ $4$ $(1,2,3,4)(5,7,6,8)$ $0$ $0$
$8$ $6$ $(1,6,2,3,5,4)(7,8)$ $1$ $1$
$6$ $8$ $(1,7,2,6,3,8,4,5)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$6$ $8$ $(1,8,2,5,3,7,4,6)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.