Properties

Label 2.3e3_241.24t22.2c2
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 3^{3} \cdot 241 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$6507= 3^{3} \cdot 241 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - 7 x^{6} + 23 x^{5} + 21 x^{4} - 50 x^{3} - 56 x^{2} - 3 x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.3_241.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 17 a + 15 + \left(7 a + 14\right)\cdot 19 + \left(16 a + 18\right)\cdot 19^{2} + \left(17 a + 10\right)\cdot 19^{3} + \left(11 a + 17\right)\cdot 19^{4} + \left(5 a + 4\right)\cdot 19^{5} + \left(17 a + 15\right)\cdot 19^{6} + 8 a\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 13 + \left(11 a + 5\right)\cdot 19 + \left(2 a + 8\right)\cdot 19^{2} + \left(a + 12\right)\cdot 19^{3} + \left(7 a + 11\right)\cdot 19^{4} + \left(13 a + 17\right)\cdot 19^{5} + \left(a + 7\right)\cdot 19^{6} + \left(10 a + 11\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 7 a + 18 + \left(8 a + 14\right)\cdot 19 + \left(13 a + 6\right)\cdot 19^{2} + \left(9 a + 16\right)\cdot 19^{3} + \left(12 a + 8\right)\cdot 19^{4} + \left(3 a + 8\right)\cdot 19^{5} + \left(16 a + 18\right)\cdot 19^{6} + 7 a\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 3 a + 14 + \left(15 a + 5\right)\cdot 19 + 7\cdot 19^{2} + \left(5 a + 3\right)\cdot 19^{3} + \left(16 a + 11\right)\cdot 19^{4} + \left(a + 10\right)\cdot 19^{5} + \left(9 a + 11\right)\cdot 19^{6} + \left(12 a + 17\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 3 + 6\cdot 19 + 8\cdot 19^{2} + 10\cdot 19^{3} + 12\cdot 19^{4} + 11\cdot 19^{5} + 11\cdot 19^{6} + 5\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 12 a + 6 + \left(10 a + 16\right)\cdot 19 + \left(5 a + 11\right)\cdot 19^{2} + \left(9 a + 12\right)\cdot 19^{3} + \left(6 a + 11\right)\cdot 19^{4} + \left(15 a + 18\right)\cdot 19^{5} + \left(2 a + 11\right)\cdot 19^{6} + \left(11 a + 11\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 12 + 13\cdot 19 + 2\cdot 19^{2} + 2\cdot 19^{3} + 18\cdot 19^{4} + 7\cdot 19^{5} + 18\cdot 19^{6} + 6\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 16 a + 17 + \left(3 a + 17\right)\cdot 19 + \left(18 a + 11\right)\cdot 19^{2} + \left(13 a + 7\right)\cdot 19^{3} + \left(2 a + 3\right)\cdot 19^{4} + \left(17 a + 15\right)\cdot 19^{5} + \left(9 a + 18\right)\cdot 19^{6} + \left(6 a + 1\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,7)(6,8)$
$(3,8)(4,6)(5,7)$
$(1,4,2,3)(5,8,7,6)$
$(3,6,5)(4,8,7)$
$(1,7,2,5)(3,6,4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)(5,7)(6,8)$$-2$
$12$$2$$(3,8)(4,6)(5,7)$$0$
$8$$3$$(1,4,6)(2,3,8)$$-1$
$6$$4$$(1,4,2,3)(5,8,7,6)$$0$
$8$$6$$(1,8,4,2,6,3)(5,7)$$1$
$6$$8$$(1,6,7,4,2,8,5,3)$$\zeta_{8}^{3} + \zeta_{8}$
$6$$8$$(1,8,7,3,2,6,5,4)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.